math_op_patch.py 14.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import warnings
18 19
import inspect

20
from .. import core
21
from ..framework import Variable, unique_name
22
from .layer_function_generator import OpProtoHolder
Y
Yang Yu 已提交
23

24
_supported_int_dtype_ = [
25
    core.VarDesc.VarType.BOOL,
26 27 28 29 30 31 32
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

33 34
compare_ops = ['__eq__', '__ne__', '__lt__', '__le__', '__gt__', '__ge__']

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
EXPRESSION_MAP = {
    "__add__": "A + B",
    "__radd__": "A += B",
    "__sub__": "A - B",
    "__rsub__": "A -= B",
    "__mul__": "A * B",
    "__rmul__": "A *= B",
    "__div__": "A / B",
    "__truediv__": "A / B",
    "__rdiv__": "A /= B",
    "__rtruediv__": "A /= B",
    "__pow__": "A ** B",
    "__rpow__": "A **= B",
    "__floordiv__": "A //B",
    "__mod__": "A % B",
50
    "__matmul__": "A @ B",
51 52 53 54 55 56 57 58
    "__eq__": "A == B",
    "__ne__": "A != B",
    "__lt__": "A < B",
    "__le__": "A <= B",
    "__gt__": "A > B",
    "__ge__": "A >= B"
}

59 60
_already_patch_variable = False

Y
Yang Yu 已提交
61 62

def monkey_patch_variable():
Y
Yang Yu 已提交
63
    def unique_tmp_name():
Y
Yu Yang 已提交
64
        return unique_name.generate("tmp")
Y
Yang Yu 已提交
65 66 67 68 69 70 71 72

    def safe_get_dtype(var):
        try:
            dtype = var.dtype
        except:
            raise ValueError("Cannot get data type from %s", var.name)
        return dtype

73
    def current_block(var):
74
        return var.block.program.current_block()
75 76 77 78 79

    def create_new_tmp_var(block, dtype):
        tmp_name = unique_tmp_name()
        return block.create_var(name=tmp_name, dtype=dtype)

Y
Yang Yu 已提交
80 81
    def create_tensor(block, value, dtype, shape):
        value = float(value)
82
        var = create_new_tmp_var(block, dtype)
Y
Yang Yu 已提交
83 84 85
        block.append_op(
            type="fill_constant",
            outputs={'Out': [var]},
86 87 88 89
            attrs={
                'dtype': var.dtype,
                'shape': shape,
                'value': value,
90
                'force_cpu': False
H
Hongyu Liu 已提交
91 92 93
            },
            stop_gradient=True)
        var.stop_gradient = True
Y
Yang Yu 已提交
94 95
        return var

Y
Yang Yu 已提交
96 97 98
    def create_scalar(block, value, dtype):
        return create_tensor(block, value, dtype, shape=[1])

Y
Yang Yu 已提交
99 100 101
    def create_tensor_with_batchsize(ref_var, value, dtype):
        assert isinstance(ref_var, Variable)
        value = float(value)
102 103
        block = current_block(ref_var)
        var = create_new_tmp_var(block, dtype)
104
        batch_dim = -1
105
        out_shape = []
106 107
        for i, d in enumerate(ref_var.shape):
            if d < 0:
108 109 110 111 112 113 114
                if batch_dim < 0:
                    batch_dim = i
                    out_shape.append(d)
                else:
                    out_shape.append(1)
            else:
                out_shape.append(d)
115
        assert batch_dim != -1
116
        block.append_op(
Y
Yang Yu 已提交
117 118 119
            type='fill_constant_batch_size_like',
            outputs={'Out': [var]},
            inputs={'Input': [ref_var]},
120
            attrs={
121
                'shape': out_shape,
122 123 124
                'value': value,
                'input_dim_idx': batch_dim,
                'output_dim_idx': batch_dim
H
Hongyu Liu 已提交
125 126 127 128
            },
            stop_gradient=True)

        var.stop_gradient = True
Y
Yang Yu 已提交
129 130 131 132
        return var

    def astype(self, dtype):
        """
J
Jiabin Yang 已提交
133 134 135
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

Y
Yang Yu 已提交
136
        Cast a variable to a specified data type.
J
Jiabin Yang 已提交
137

Y
Yang Yu 已提交
138
        Args:
J
Jiabin Yang 已提交
139

Y
Yang Yu 已提交
140
            self(Variable): The source variable
J
Jiabin Yang 已提交
141 142

            dtype: The target data type
Y
Yang Yu 已提交
143 144

        Returns:
J
Jiabin Yang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

Y
Yang Yu 已提交
175
        """
176 177 178
        block = current_block(self)
        out = create_new_tmp_var(block, dtype)
        block.append_op(
Y
Yang Yu 已提交
179 180 181 182 183
            type="cast",
            inputs={"X": [self]},
            outputs={"Out": [out]},
            attrs={"in_dtype": self.dtype,
                   "out_dtype": out.dtype})
184
        out.stop_gradient = self.stop_gradient
Y
Yang Yu 已提交
185 186
        return out

187
    def _scalar_op_(var, scale, bias):
188 189 190 191 192 193 194 195 196 197
        block = current_block(var)
        out = create_new_tmp_var(block, var.dtype)
        block.append_op(
            type="scale",
            inputs={"X": [var]},
            outputs={"Out": [out]},
            attrs={"scale": scale,
                   "bias": bias})
        return out

198
    def _neg_(var):
199
        return _scalar_op_(var, -1.0, 0.0)
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    @property
    def _ndim_(self):
        """
        Returns the dimension of current Variable

        Returns:
            the dimension

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # print the dimension of the Variable
                print(x.ndim)
        """
        return len(self.shape)

223 224
    def _scalar_add_(var, value):
        return _scalar_op_(var, 1.0, value)
225

226 227
    def _scalar_sub_(var, value):
        return _scalar_op_(var, 1.0, -value)
228

229 230
    def _scalar_rsub_(var, value):
        return _scalar_op_(var, -1.0, value)
231

232 233
    def _scalar_mul_(var, value):
        return _scalar_op_(var, value, 0.0)
234

235 236
    def _scalar_div_(var, value):
        return _scalar_op_(var, 1.0 / value, 0.0)
237

238 239 240 241
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
Y
Yang Yu 已提交
242
        def __impl__(self, other_var):
243 244 245 246 247 248 249 250 251
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
252
                    return scalar_method(self, other_var)
253 254 255 256 257 258
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
259 260 261
                # the division result can only guarantee the numerical accuracy of 6 digits
                # after the decimal point. The result of numpy calculation is of float64 type,
                # so the calculation result here and the calculation result of numpy are
262 263 264 265 266 267 268 269 270 271 272
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
273

274
            # 2. create variable for scalar
Y
Yang Yu 已提交
275 276 277 278 279 280 281 282 283 284
            lhs_dtype = safe_get_dtype(self)
            if not isinstance(other_var, Variable):
                if reverse:
                    has_batch_size = False
                    for elem in self.shape:
                        if elem < 0:
                            has_batch_size = True
                            break
                    if not has_batch_size:
                        other_var = create_tensor(
285
                            current_block(self),
Y
Yang Yu 已提交
286 287 288 289 290 291 292
                            other_var,
                            dtype=lhs_dtype,
                            shape=self.shape)
                    else:
                        other_var = create_tensor_with_batchsize(
                            self, other_var, lhs_dtype)
                else:
293
                    # add fill_op to current_block
Y
Yang Yu 已提交
294
                    other_var = create_scalar(
295
                        current_block(self), value=other_var, dtype=lhs_dtype)
Y
Yang Yu 已提交
296

297
            # 3. unify right var type to left var
Y
Yang Yu 已提交
298 299 300 301 302 303 304 305
            rhs_dtype = safe_get_dtype(other_var)
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

306 307 308 309 310 311
            # NOTE(zhiqiu): the output of compare operator should be bool.
            if method_name in compare_ops:
                out = create_new_tmp_var(current_block(self), dtype="bool")
            else:
                out = create_new_tmp_var(current_block(self), dtype=lhs_dtype)

312 313
            axis = -1
            if other_var.shape[0] == -1:
314 315 316
                stack = inspect.stack()[1]
                file_name = stack[1]
                line_num = stack[2]
317
                warnings.warn(
318 319 320 321 322
                    "%s:%s\nThe behavior of expression %s has been unified with %s(X, Y, axis=-1) from Paddle 2.0. "
                    "If your code works well in the older versions but crashes in this version, try to use "
                    "%s(X, Y, axis=0) instead of %s. This transitional warning will be dropped in the future."
                    % (file_name, line_num, EXPRESSION_MAP[method_name],
                       op_type, op_type, EXPRESSION_MAP[method_name]))
323
            current_block(self).append_op(
Y
Yang Yu 已提交
324 325 326
                type=op_type,
                inputs={'X': [self],
                        'Y': [other_var]},
327
                outputs={'Out': out},
328
                attrs={'axis': axis})
Y
Yang Yu 已提交
329 330 331 332 333 334 335 336
            return out

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
            self(Variable): left hand variable
337
            other_var(Variable|float|int): right hand variable
Y
Yang Yu 已提交
338 339 340 341 342 343 344

        Returns:
            Variable
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

345 346 347 348
    variable_methods = [
        #   b=-a
        ('__neg__', _neg_),
        ('astype', astype),
349 350 351
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
352 353 354 355 356 357 358 359 360 361 362 363 364 365
        ('__add__', _binary_creator_('__add__', 'elementwise_add', False,
                                     _scalar_add_)),
        #  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
                                     _scalar_sub_)),
        ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
                                      _scalar_rsub_)),
        ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
                                     _scalar_mul_)),
        #  a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
S
ShenLiang 已提交
366 367 368 369 370 371 372 373
        ('__div__', _binary_creator_('__div__', 'elementwise_div', False,
                                     _scalar_div_)),
        ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
                                         False, _scalar_div_)),
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
        ('__rtruediv__', _binary_creator_('__rtruediv__', 'elementwise_div',
                                          True, None)),
374 375 376 377
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
S
ShenLiang 已提交
378 379 380 381
        ('__floordiv__', _binary_creator_('__floordiv__',
                                          'elementwise_floordiv', False, None)),
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
382 383
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        #  for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None))
    ]

    global _already_patch_variable
    if not _already_patch_variable:
        for method in variable_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(Variable, method_name, method_impl)
    else:
        import paddle.tensor
401
        variabel_methods = paddle.tensor.tensor_method_func
402
        for method_name in variabel_methods:
403 404 405 406 407
            if hasattr(Variable, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(Variable, method_name, method_impl)

    _already_patch_variable = True