stack_op_xpu.cc 3.2 KB
Newer Older
D
Double_V 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/stack_op.h"
16
#include <string>
D
Double_V 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#ifdef PADDLE_WITH_XPU

namespace paddle {
namespace operators {

using framework::Tensor;
template <typename DeviceContext, typename T>
class StackXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto x = ctx.MultiInput<Tensor>("X");
    auto* y = ctx.Output<Tensor>("Y");
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) {
      axis += (x[0]->dims().size() + 1);
    }
    int n = static_cast<int>(x.size());
    PADDLE_ENFORCE_LE(n, 24,
                      platform::errors::InvalidArgument(
                          "XPU only surpport at most 24 tensors for now"));
    auto* y_data = y->mutable_data<T>(ctx.GetPlace());
    int pre = 1, post = 1;
    auto& dim = x[0]->dims();
    for (auto i = 0; i < axis; ++i) {
      pre *= dim[i];
    }
    for (auto i = axis; i < dim.size(); ++i) {
      post *= dim[i];
    }
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    void* x_datas_host = std::malloc(n * sizeof(void*));
    void* x_datas_device = nullptr;
49 50 51 52 53 54 55 56 57
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&x_datas_device),
                                 n * sizeof(void*)),
                      XPU_SUCCESS,
                      platform::errors::ResourceExhausted(
                          "\n\nOut of memory error on XPU, Cannot"
                          "allocate %s memory on XPU. \n\nPlease "
                          "check whether there is any other process "
                          "using XPU.\n",
                          string::HumanReadableSize(n * sizeof(void*))));
D
Double_V 已提交
58 59 60 61 62 63 64 65
    for (auto i = 0; i < n; ++i) {
      ((const void**)x_datas_host)[i] = x[i]->data<T>();
    }
    memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()),
                 x_datas_device, platform::CPUPlace(), x_datas_host,
                 n * sizeof(void*));
    int r = xpu::stack_forward<float>(dev_ctx.x_context(), pre, post, n,
                                      x_datas_device, y_data);
66 67 68 69 70 71
    PADDLE_ENFORCE_EQ(
        r, xpu::Error_t::SUCCESS,
        platform::errors::External(
            "The stack XPU API return wrong value[%d], please check "
            "where Baidu Kunlun Card is properly installed.",
            r));
D
Double_V 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    dev_ctx.Wait();
    std::free(x_datas_host);
    xpu_free(x_datas_device);
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(stack,
                       ops::StackXPUKernel<plat::XPUDeviceContext, float>);
#endif