nn.py 90.0 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contrib layers just related to the neural network.
"""

from __future__ import print_function

import os
21 22
import six
import warnings
23
import inspect
24 25

import numpy as np
26
import paddle
27
from paddle.fluid.layer_helper import LayerHelper
28
from paddle.fluid.layers import utils
Z
zhoushiyu 已提交
29
from ... import unique_name
C
Chengmo 已提交
30
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
31
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32 33

from paddle.fluid import core
Z
Zhang Ting 已提交
34
from paddle.fluid.param_attr import ParamAttr
35

C
Chengmo 已提交
36
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
C
Chengmo 已提交
37
from paddle.fluid.layers import slice, reshape
38
import warnings
W
wanghuancoder 已提交
39
from paddle import _C_ops
40

41
__all__ = [
42 43
    'fused_elemwise_activation', 'sequence_topk_avg_pooling', 'var_conv_2d',
    'match_matrix_tensor', 'tree_conv', 'fused_embedding_seq_pool',
44
    'multiclass_nms2', 'search_pyramid_hash', 'shuffle_batch', 'partial_concat',
45
    'sparse_embedding', 'partial_sum', 'tdm_child', 'rank_attention',
46
    'tdm_sampler', 'batch_fc', '_pull_box_extended_sparse', 'bilateral_slice',
D
danleifeng 已提交
47
    'correlation', 'fused_bn_add_act', 'fused_seqpool_cvm'
48
]
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99


def fused_elemwise_activation(x,
                              y,
                              functor_list,
                              axis=-1,
                              scale=0.0,
                              save_intermediate_out=True):
    """
    **Fused elementwise_add/mul and activation layers**

    This function computes an elementwise_add/mul cooperated with an activation.

    .. math::

        out = Unary(Binary(x, y))

    or

    .. math::

        out = Binary(x, Unary(y))

    Unary operators can be: `scale`, `relu`, `tanh`. Binary operators can be:
    `elementwise_add`, `elementwise_mul`.

    Args:
        x (Variable): left operation of the binary operator.
        y (Variable): right operator of the binary operator.
        functor_list (list of str): types of operator which will be executed
            by this layer. For example, ['elementwise_add', 'relu']
            (out = elementwise_add(x, relu(y))),
            or ['relu', 'elemmentwise_add'] (out = relu(elementwise_add(x, y))).
        axis (int32, default -1): axis of elementwise op.
        scale (float32, default 0): parameter of scale op.
        save_intermediate_out (bool, default True): whether to save the
            intermediate result, Unary(y) or Binary(x, y).

    Returns:
        Variable: The computation result.
    """
    if isinstance(functor_list, str):
        functor_list = functor_list.split(',')

    if not isinstance(functor_list, list) or len(functor_list) != 2:
        raise ValueError(
            'functor_list should be a list of str, and the length should be 2.')

    helper = LayerHelper('fused_elemwise_activation', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    intermediate_out = helper.create_variable_for_type_inference(dtype=x.dtype)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    helper.append_op(type='fused_elemwise_activation',
                     inputs={
                         'X': x,
                         'Y': y
                     },
                     outputs={
                         'Out': out,
                         'IntermediateOut': intermediate_out
                     },
                     attrs={
                         'axis': axis,
                         'scale': scale,
                         'save_intermediate_out': save_intermediate_out,
                         'functor_list': functor_list
                     })
115
    return out
116 117 118 119 120 121 122 123 124 125 126 127 128


def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
129
    r"""
130 131
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
C
Chengmo 已提交
132 133
    and :attr:`col` are 1-level LodTensor. The convolution operation is same as conv2d layer with
    padding. Besides, input.dims[1] should be 1.
134 135

    .. code-block:: text
C
Chengmo 已提交
136

137 138 139
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
C
Chengmo 已提交
140
            input is a lodTensor:
141 142
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
C
Chengmo 已提交
143

144
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
C
Chengmo 已提交
145 146
                # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.lod = [[90, 84]]
147 148 149
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
T
tianshuo78520a 已提交
150 151 152
        input (Variable): The input should be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row should be 1-level LodTensor to provide height information.
        col (Variable): The col should be 1-level LodTensor to provide width information.
153 154 155 156 157 158 159 160 161 162 163 164
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
165 166
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{
  0.5}`. Default: None.
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
C
Chengmo 已提交
186
            out = contrib.var_conv_2d(input=x_lod_tensor,
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
208 209
        dtype=dtype,
    )
210 211

    conv_res = helper.create_variable_for_type_inference(dtype)
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    tmp_res = helper.create_variable_for_type_inference(dtype,
                                                        stop_gradient=True)

    helper.append_op(type='var_conv_2d',
                     inputs={
                         'X': input,
                         'ROW': row,
                         'COLUMN': col,
                         'W': filter_param,
                     },
                     outputs={
                         "Out": conv_res,
                         "Col": tmp_res
                     },
                     attrs={
                         'InputChannel': input_channel,
                         'OutputChannel': output_channel,
                         'StrideH': stride[0],
                         'StrideW': stride[1],
                         'KernelH': filter_size[0],
                         'KernelW': filter_size[1],
                     })
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

    return helper.append_activation(conv_res)


def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
C
Chengmo 已提交
250 251 252
    Then the semantic matching matrix of query A and title B is calculated by
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W`
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided,
253 254 255 256 257 258
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
C
Chengmo 已提交
259 260 261 262
                x.lod =  [
                    [2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [
                    0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
263 264 265 266 267 268
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
C
Chengmo 已提交
269 270
                # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.lod =  [[12, 6]]
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
C
Chengmo 已提交
295 296
            out, out_tmp = contrib.match_matrix_tensor(
                x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
297 298 299 300 301
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
302 303
    assert len(x_shape) == 2 and len(
        y_shape) == 2 and x_shape[-1] == y_shape[-1]
304 305

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
306 307 308 309
    w = helper.create_parameter(attr=helper.param_attr,
                                shape=weight_shape,
                                dtype=dtype,
                                is_bias=False)
310
    mm_res = helper.create_variable_for_type_inference(dtype)
311 312 313 314 315 316 317 318 319 320 321 322 323
    tmp_res = helper.create_variable_for_type_inference(dtype,
                                                        stop_gradient=True)
    helper.append_op(type='match_matrix_tensor',
                     inputs={
                         'X': x,
                         'Y': y,
                         'W': w,
                     },
                     outputs={
                         "Out": mm_res,
                         "Tmp": tmp_res
                     },
                     attrs={'dim_t': channel_num})
324 325 326 327 328 329 330

    return helper.append_activation(mm_res), tmp_res


def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
C
Chengmo 已提交
331 332 333
    it will average the topk features as an output feature for each channel of every
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height
    and width information for :attr:`input` tensor. If feature size of input sequence is less
334 335 336 337 338 339 340 341
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

C
Chengmo 已提交
342
            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i]
343 344 345 346 347 348 349 350 351
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
T
tianshuo78520a 已提交
352
        row (Variable): The row should be 1-level LodTensor to provide the height information
353
                        of the input tensor data.
T
tianshuo78520a 已提交
354
        col (Variable): The col should be 1-level LodTensor to provide the width information
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = contrib.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    pos = helper.create_variable_for_type_inference(dtype=helper.input_dtype(),
                                                    stop_gradient=True)
    helper.append_op(type='sequence_topk_avg_pooling',
                     inputs={
                         'X': input,
                         'ROW': row,
                         'COLUMN': col
                     },
                     outputs={
                         'Out': out,
                         'pos': pos
                     },
                     attrs={
                         'topks': topks,
                         'channel_num': channel_num
                     })
397 398

    return out
399 400 401 402 403 404 405 406 407 408 409


def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
C
Chengmo 已提交
410
    """
411
    ${comment}
412 413
Args : nodes_vector(${nodes_vector_type}) : $ { nodes_vector_comment }
edge_set(${edge_set_type}) : $ { edge_set_comment }
414 415 416 417 418 419 420 421 422
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
423 424 425
        out(${out_type}): ${
          out_comment
        }
426 427 428 429 430

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
431

432
          # 10 for max_node_size of dataset, 5 for vector width
C
Chengmo 已提交
433 434
          nodes_vector = fluid.layers.data(
              name='vectors', shape=[10, 5], dtype='float32')
435 436
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
C
Chengmo 已提交
437 438
          edge_set = fluid.layers.data(name='edge_set', shape=[
                                       10, 2], dtype='float32')
439 440 441
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
442
#After reshape, output tensor could be nodes_vector for next tree convolution
443 444
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
445
#also output tensor could be pooling(the pooling in paper called global pooling)
446 447
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
    """
448 449 450
    check_type(nodes_vector, 'nodes_vector', (Variable), 'tree_conv')
    check_type(edge_set, 'edge_set', (Variable), 'tree_conv')

451 452 453 454
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
455 456 457 458
    W = helper.create_parameter(attr=param_attr,
                                shape=W_shape,
                                dtype=dtype,
                                is_bias=False)
459
    out = helper.create_variable_for_type_inference(dtype=dtype)
460 461 462 463 464 465 466 467 468 469
    helper.append_op(type='tree_conv',
                     inputs={
                         'NodesVector': nodes_vector,
                         'EdgeSet': edge_set,
                         'Filter': W
                     },
                     outputs={
                         'Out': out,
                     },
                     attrs={'max_depth': max_depth})
470 471 472 473 474
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
475 476 477 478 479 480 481 482 483


def fused_embedding_seq_pool(input,
                             size,
                             is_sparse=False,
                             padding_idx=None,
                             combiner='sum',
                             param_attr=None,
                             dtype='float32'):
484
    r"""
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    **Embedding Sequence pool**

    This layer is the fusion of lookup table and sequence_pool.

    Args:
        input (Variable): Input is a Tensor<int64> Variable, which contains the IDs' information.
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
        size (tuple|list): The shape of the lookup_table parameter. It should
            have two elements which indicate the size of the dictionary of
            embedding and the size of each embedding vector respectively.
        is_sparse (bool): The flag indicating whether to use sparse update.
            Default: False.
        padding_idx (int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        combiner (str): The pooling type of sequence_pool, and only support `sum`.
            Default: sum.
        param_attr (ParamAttr): Parameters for this layer.
        dtype (np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
    Returns:
        The sequence pooling variable which is a Tensor.
    Examples:
        .. code-block:: python
            import numpy as np
            import paddle.fluid as fluid

            dict_size = 20
C
Chengmo 已提交
515 516
            data_t = fluid.layers.data(
                name='word', shape=[1], dtype='int64', lod_level=1)
517 518 519 520 521 522 523 524 525
            padding_idx = np.random.randint(1, 10)
            out = fluid.contrib.fused_embedding_seq_pool(
                input=data_t,
                size=[dict_size, 32],
                param_attr='w',
                padding_idx=padding_idx,
                is_sparse=False)
    """
    helper = LayerHelper('fused_embedding_seq_pool', **locals())
526 527 528 529
    w = helper.create_parameter(attr=helper.param_attr,
                                shape=size,
                                dtype=dtype,
                                is_bias=False)
530 531 532
    out = helper.create_variable_for_type_inference(dtype)
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
533 534 535 536 537 538 539 540 541 542 543
    helper.append_op(type='fused_embedding_seq_pool',
                     inputs={
                         'Ids': input,
                         'W': w
                     },
                     outputs={'Out': out},
                     attrs={
                         'is_sparse': is_sparse,
                         'combiner': combiner,
                         'padding_idx': padding_idx
                     })
544
    return out
545 546


D
danleifeng 已提交
547 548 549 550 551 552 553
def fused_seqpool_cvm(input,
                      pool_type,
                      cvm,
                      pad_value=0.0,
                      use_cvm=True,
                      cvm_offset=2):
    """
554
    :api_attr: Static Graph
D
danleifeng 已提交
555

556
    This OP is the fusion of sequence_pool and continuous_value_model op.
D
danleifeng 已提交
557

558
    **Note:** The Op only receives List of LoDTensor as input, only support SUM pooling now.
D
danleifeng 已提交
559 560 561 562 563

    Args:
        input(Variable|list of Variable): Input is List of LoDTensor.
        pool_type(str): pooling type, only support SUM pooling now.
        cvm(Variable): cvm Variable.
564 565 566 567
        pad_value(float, optional): padding value of sequence pool. Default: 0.0.
        use_cvm(bool, optional): use cvm or not. Default: True.
        cvm_offset(int, optional): cvm offset. Default: 2, which means cvm contains show, click.

D
danleifeng 已提交
568 569 570
    Returns:
        Variable|list of Variable: The tensor variable storing sequence pool and cvm
        of input.
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()

            data = paddle.static.data(name='x', shape=[-1, 1], dtype='int64', lod_level=1)
            data2 = paddle.static.data(name='y', shape=[-1, 1], dtype='int64', lod_level=1)
            inputs = [data, data2]
            embs = fluid.layers.nn._pull_box_sparse(input=inputs, size=11, is_distributed=True, is_sparse=True)

            label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64", lod_level=1)
            ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
            show_clk = paddle.cast(paddle.concat([ones, label], axis=1), dtype='float32')
            show_clk.stop_gradient = True

            cvms = fluid.contrib.layers.fused_seqpool_cvm(embs, 'sum', show_clk)


D
danleifeng 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    """
    helper = LayerHelper('fused_seqpool_cvm', **locals())

    if pool_type.upper() != 'SUM':
        raise ValueError(
            "fused_seqpool_cvm only support SUM pooling now, and your type is: "
            + pool_type)

    check_type(input, 'input', list, 'fused_seqpool_cvm')
    if isinstance(input, list):
        for _input in input:
            check_variable_and_dtype(_input, 'input', ['float32'],
                                     'fused_seqpool_cvm')

    dtype = helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]

613 614 615 616 617 618 619 620 621 622 623 624
    helper.append_op(type="fused_seqpool_cvm",
                     inputs={
                         "X": inputs,
                         "CVM": cvm
                     },
                     outputs={"Out": outs},
                     attrs={
                         "pooltype": pool_type.upper(),
                         "pad_value": pad_value,
                         "use_cvm": use_cvm,
                         "cvm_offset": cvm_offset,
                     })
D
danleifeng 已提交
625 626 627 628

    return outs


629 630 631 632 633 634 635 636 637 638 639 640 641
def multiclass_nms2(bboxes,
                    scores,
                    score_threshold,
                    nms_top_k,
                    keep_top_k,
                    nms_threshold=0.3,
                    normalized=True,
                    nms_eta=1.,
                    background_label=0,
                    return_index=False,
                    name=None):
    """
    **Multiclass NMS2**
C
Chengmo 已提交
642

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
C
Chengmo 已提交
660
                           coordinate values and the layout is
661 662
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
C
Chengmo 已提交
663 664
                           M is the number of bounding boxes, C is the
                           class number
665 666 667
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
C
Chengmo 已提交
668 669
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
670 671 672 673 674 675 676
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
C
Chengmo 已提交
677
        background_label (int): The index of background label, the background
678 679 680
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
C
Chengmo 已提交
681
                                 low confidence score. If not provided,
682 683
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
684
                         the confidences after the filtering detections based
685 686 687 688 689 690 691 692 693 694 695
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
C
Chengmo 已提交
696 697 698 699 700 701
        otherwise, a tuple with one Variable(Out) is returned.
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        or A 2-D LoDTensor with shape [No, 10] represents the detections.
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
        x4, y4]. No is the total number of detections.
702 703
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
C
Chengmo 已提交
704 705 706 707 708
        Index: Only return when return_index is True. A 2-D LoDTensor with
        shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    helper.append_op(type="multiclass_nms2",
                     inputs={
                         'BBoxes': bboxes,
                         'Scores': scores
                     },
                     attrs={
                         'background_label': background_label,
                         'score_threshold': score_threshold,
                         'nms_top_k': nms_top_k,
                         'nms_threshold': nms_threshold,
                         'keep_top_k': keep_top_k,
                         'nms_eta': nms_eta,
                         'normalized': normalized
                     },
                     outputs={
                         'Out': output,
                         'Index': index
                     })
753 754 755 756 757 758
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output
A
Aurelius84 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776


def search_pyramid_hash(input,
                        num_emb,
                        space_len,
                        pyramid_layer,
                        rand_len,
                        drop_out_percent,
                        is_training,
                        use_filter,
                        white_list_len,
                        black_list_len,
                        seed,
                        lr,
                        param_attr=None,
                        param_attr_wl=None,
                        param_attr_bl=None,
                        name=None,
C
Chengmo 已提交
777
                        distribute_update_vars=None,
A
Aurelius84 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
                        dtype='float32'):
    """
    **Pyramid hash embedding**

    Args:
        input (Variable): LoDTensor<int32> Variable contained the IDs' information.
        num_emb (int): The embedding size of output.
        space_len (int): The length of pyramid hash embedding space.
        pyramid_layer (int): The number of pyramid layers. It should be greater than 2.
        rand_len (int): The minimum length of pyramid hash cell.
        drop_out_percent (float): The probability of dropping out the input token randomly.
            It should satisfy: [0., 1.]
        is_training (bool): Whether in training or testing phrase.
        use_filter(bool): If set True, the white filter and black filter should be given by
            :attr:`param_attr_wl` and :attr:`param_attr_bl` .
        white_list_len(int): If set :math:`white_list_len>0` , white filter with shape [white_list_len, 1]
            should be provided by param_attr_wl.
        black_list_len(int): If set :math:`black_list_len>0` , black filter with shape [black_list_len, 1]
            should be provided by param_attr_bl.
        seed(int): The number of random seed.
        lr(float): The learning rate of weight created by :attr:`param_attr` with shape [space_len+rand_len, 1]
            in this layer.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        param_attr_wl(ParamAttr): Specified parameters of white filter.
        param_attr_bl(ParamAttr): Specified parameters of black filter.
C
Chengmo 已提交
804
        distribute_update_vars(list[ParamAttr.name]): Decided which params should be updated in distribute training.
C
Chengmo 已提交
805
            Used in Distribute Transpiler to create a trainer/server program.
A
Aurelius84 已提交
806 807 808 809 810 811 812 813 814
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
        dtype(str): The data type of output variable, float32.
    Returns:
        Variable: LoDTensor of pyramid hash embedding.
    """
    helper = LayerHelper('search_pyramid_hash', **locals())

    w_shape = [space_len + rand_len, 1]
815 816 817 818
    w = helper.create_parameter(attr=param_attr,
                                shape=w_shape,
                                dtype=dtype,
                                is_bias=False)
A
Aurelius84 已提交
819 820 821 822 823
    w.stop_gradient = True

    input_vars = {'X': input, 'W': w}
    if white_list_len > 0:
        wl_shape = [white_list_len, 1]
824 825 826 827
        white_list = helper.create_parameter(attr=param_attr_wl,
                                             shape=wl_shape,
                                             dtype=dtype,
                                             is_bias=False)
A
Aurelius84 已提交
828 829 830 831 832
        white_list.stop_gradient = True
        input_vars['WhiteList'] = white_list

    if black_list_len >= 0:
        bl_shape = [black_list_len, 1]
833 834 835 836
        black_list = helper.create_parameter(attr=param_attr_bl,
                                             shape=bl_shape,
                                             dtype=dtype,
                                             is_bias=False)
A
Aurelius84 已提交
837 838 839
        black_list.stop_gradient = True
        input_vars['BlackList'] = black_list

C
Chengmo 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
    distribute_update_vars_str = ""
    if distribute_update_vars:
        assert isinstance(distribute_update_vars, list)
        special_name_list = []
        if param_attr:
            special_name_list.append(param_attr.name)
        if param_attr_wl:
            special_name_list.append(param_attr_wl.name)
        if param_attr_bl:
            special_name_list.append(param_attr_bl.name)
        for param in distribute_update_vars:
            if param not in special_name_list:
                raise ValueError(
                    "Pyramid Hash layer didn't have parameter {}".format(param))
        distribute_update_vars_str = ",".join(distribute_update_vars)

A
Aurelius84 已提交
856 857 858
    res = helper.create_variable_for_type_inference(dtype)
    drop_pos = helper.create_variable_for_type_inference(dtype)
    x_temp_out = helper.create_variable_for_type_inference(dtype)
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
    helper.append_op(type='pyramid_hash',
                     inputs=input_vars,
                     outputs={
                         "Out": res,
                         "X_Temp_Out": x_temp_out,
                         'DropPos': drop_pos
                     },
                     attrs={
                         'num_emb': num_emb,
                         'space_len': space_len,
                         'pyramid_layer': pyramid_layer,
                         'rand_len': rand_len,
                         'drop_out_percent': drop_out_percent,
                         'is_training': is_training,
                         'use_filter': use_filter,
                         'white_list_len': white_list_len,
                         'black_list_len': black_list_len,
                         'seed': seed,
                         'lr': lr,
                         'distribute_update_vars': distribute_update_vars_str
                     })
A
Aurelius84 已提交
880 881

    return res
Z
zhoushiyu 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936


def shuffle_batch(x, seed=None):
    """
    This layer shuffle input tensor :attr:`x` . Normally, :attr:`x` is 2-D LoDTensor.

    :attr:`x` is a LoDTensor to be shuffled with shape :math:`[N_1, N_2, ..., N_k, D]` . Note that the last dim of input will not be shuffled.
    :math:`N_1 * N_2 * ... * N_k` numbers of elements with length :math:`D` will be shuffled randomly.

    For Example:

    .. code-block:: text

      Input:
        x.data = [[1, 2], [3, 4], [5, 6], [7, 8]]
        x.dims = [4, 2]

      Attrs:
        seed = 2019

      Output:
        Out.data =[[7, 8], [1, 2], [3, 4], [5, 6]]
        Out.dims = [4, 2]

    Args:
        x (Variable): The input variable. The input variable is a N-D LoDTensor with type int, float32 or float64.
        seed (None|int|Variable): The start up seed. If set, seed will be set as the start up seed of shuffle engine.
                If not set(Default), start up seed of shuffle engine will be generated randomly.

    Returns:
        Variables: The shuffled LoDTensor with the same shape and lod as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[-1, 4])
            out = fluid.contrib.layers.shuffle_batch(x)
    """
    helper = LayerHelper('shuffle_batch', **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    shuffle_idx = helper.create_variable_for_type_inference(dtype=np.int64)
    if seed is None and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed
    if seed is None:
        seed = np.random.randint(-65536, 65535)
    op_attrs = {}
    if isinstance(seed, int):
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("shuffle_batch_seed"),
            dtype="int64",
            persistable=True)
937 938 939 940 941 942 943 944 945 946 947
    helper.append_op(type='shuffle_batch',
                     inputs={
                         'X': x,
                         'Seed': seed
                     },
                     outputs={
                         'Out': out,
                         'ShuffleIdx': shuffle_idx,
                         'SeedOut': seed
                     },
                     attrs=op_attrs)
Z
zhoushiyu 已提交
948
    return out
949 950 951 952 953 954 955


def partial_concat(input, start_index=0, length=-1):
    """
    **Partial Concat**
    This OP concatenates the inputs according to the start index and length. This
    OP exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
956
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
957 958 959
    performed along the second dimension.

    .. code-block:: text
C
Chengmo 已提交
960

961 962 963 964 965 966 967 968
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_concat([x, y], start_index=0, length=2)

          we get:
C
Chengmo 已提交
969

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
            output = [[0, 1, 6, 7],
                      [3, 4, 9, 10]]

    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        start_index(int32): The start index of each instance for partial concatenation.
            Default is 0.
        length(int32): The length of each instance for partial concatenation. Default is -1.
            Negative values for all elements after start_index.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            x = fluid.data(name="x", shape=[None,3], dtype="float32")
            y = fluid.data(name="y", shape=[None,3], dtype="float32")
C
Chengmo 已提交
987 988
            concat = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2)
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
    """
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in partial_concat should be list, but received %s."
            % (type(input)))
        input = [input]
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'partial_concat')
    check_type(start_index, 'start_index', (int), 'partial_concat')
    check_type(length, 'length', (int), 'partial_concat')
    inputs = {'X': input}
    attrs = {'start_index': start_index, 'length': length}
    helper = LayerHelper('partial_concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
1006 1007 1008 1009
    helper.append_op(type='partial_concat',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs)
1010
    return out
1011 1012 1013 1014 1015


def partial_sum(input, start_index=0, length=-1):
    """
    **PartialSum**
C
Chengmo 已提交
1016
    This Op can sum the vars by specifying the initial position(start_index) and length(length).
1017
    This Op exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
1018
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
1019 1020
    performed along the second dimension.
    .. code-block:: text
C
Chengmo 已提交
1021

1022 1023 1024 1025 1026 1027 1028
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_sum([x, y], start_index=0, length=2)
          we get:
C
Chengmo 已提交
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
            output = [[6, 8],
                      [12, 14]]
    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
        import paddle.fluid.layers as layers
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 3], dtype="float32")
        y = fluid.data(name="y", shape=[None, 3], dtype="float32")
        sum = layers.partial_sum([x,y], start_index=0, length=2)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        xx = np.array([1,2,3,4,5,6]).reshape((2,3)).astype("float32")
        yy = np.array([6,5,4,4,5,6]).reshape((2,3)).astype("float32")
        out = exe.run(feed={"x":xx, "y":yy}, fetch_list=[sum])
    """
    for id, x in enumerate(input):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'partial_sum')

    inputs = {'X': input}
    attrs = {}
    attrs['start_index'] = start_index
    attrs['length'] = length
    helper = LayerHelper('partial_sum', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
1062 1063 1064 1065
    helper.append_op(type='partial_sum',
                     inputs=inputs,
                     outputs={'Out': [out]},
                     attrs=attrs)
1066
    return out
C
Chengmo 已提交
1067 1068


1069 1070 1071 1072 1073
def sparse_embedding(input,
                     size,
                     padding_idx=None,
                     is_test=False,
                     entry=None,
1074
                     table_class="MemorySparseTable",
1075
                     param_attr=None,
1076 1077
                     dtype='float32',
                     slot=None):
Y
Yanxing Shi 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    r"""
    :api_attr: Static Graph

    The OP is used as the operator of the Embedding Lookup layer in the large-scale 
    sparse training of the parameter server mode, instead of using the paddle.nn.functional.embedding.

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` . 
    It automatically constructs a 2D embedding matrix based on the input :attr:`size` 
    (vocab_size, emb_size) and :attr:`dtype` .

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , otherwise 
    the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[1, 3], [2, 4], [4, 127]]
            input.shape = [3, 2]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:

        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 1, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452]],
                        [[0.345421456, 0.524563927, ..., 0.144534654]],
                        [[0.345249859, 0.124939536, ..., 0.194353745]],
                        [[0.945345345, 0.435394634, ..., 0.435345365]],
                        [[0.0,         0.0,         ..., 0.0        ]]]  # padding data
        It will pad all-zero data when ids is 0.

    Args:
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id 
            information. The value of the input id should satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter (vocab_size, emb_size). It 
            should have two elements which indicates the size of the dictionary of embeddings 
            and the size of each embedding vector respectively. The initial parameter size 
            is 0 in the large-scale sparse scenario, which will gradually expand with the 
            training. So if vocab_size is temporarily useless, its value can be any integer.
            The emb_size is the dimensional configuration of the word embedding weight parameter.
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever 
            lookup encounters :math:`padding\_idx` in id. And the padding data will not be updated 
            while training. If set None, it makes no efe mfect to output. Default: None.
        is_test(bool, optional): Training or prediction mode. In prediction mode (is_test=False), 
            the output is not initialized and created, and it is filled with 0 and returned. Default: False.
        entry(str, optional): Entry config with parameter server whose value is ProbabilityEntry, 
            CountFilterEntry or None. Default: None.
        table_class(str, optional): The type of the sparse table. The value can be CommonSparseTable 
            or SSDSparseTable. The default is CommonSparseTable.
        param_attr(ParamAttr, optional): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. In addition, user-defined or pre-trained word 
            vectors can be loaded with the :attr:`param_attr` parameter. The local word vector needs 
            to be transformed into numpy format, and the shape of local word vector should be consistent 
            with :attr:`size` .
1157
        dtype(str): It refers to the data type of output Tensor. It must be float32 or 
Y
Yanxing Shi 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
            float64. Default: float32.
            
    Returns:
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
    
    Examples:
        .. code-block:: python

            import paddle
            
            paddle.enable_static()
            sparse_feature_dim = 1024
            embedding_size = 64

            # Only when the feature appear more than 10 times or more will be participated in the training.
            entry = paddle.distributed.CountFilterEntry(10)

            input = paddle.static.data(name='ins', shape=[1], dtype='int64')
        
            emb = paddle.static.nn.sparse_embedding(
                input=input,
                size=[sparse_feature_dim, embedding_size],
                is_test=False,
                entry=entry,
                param_attr=paddle.ParamAttr(name="SparseFeatFactors",
                initializer=paddle.nn.initializer.Uniform()))

    """

1187 1188 1189 1190 1191
    helper = LayerHelper('sparse_embedding', **locals())

    check_variable_and_dtype(input, 'input', ['int64'],
                             'fluid.contrib.layers.sparse_embedding')

Y
Yanxing Shi 已提交
1192
    check_dtype(dtype, 'dtype', ['float32', 'float64'],
1193
                'paddle.static.nn.sparse_embedding')
1194

1195 1196 1197 1198 1199
    w = helper.create_parameter(attr=helper.param_attr,
                                shape=size,
                                type=core.VarDesc.VarType.SELECTED_ROWS,
                                dtype=dtype,
                                is_bias=False)
1200 1201 1202 1203 1204 1205

    tmp = helper.create_variable_for_type_inference(dtype)

    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)

1206 1207 1208
    if table_class not in [
            "CommonSparseTable", "SSDSparseTable", "MemorySparseTable"
    ]:
T
Thunderbrook 已提交
1209
        raise ValueError(
1210 1211
            "table_class must be in [CommonSparseTable, SSDSparseTable, MemorySparseTable]"
        )
T
Thunderbrook 已提交
1212

1213 1214 1215
    entry_str = "none"

    if entry is not None:
T
tangwei12 已提交
1216
        if entry.__class__.__name__ not in [
1217
                "ProbabilityEntry", "CountFilterEntry", "ShowClickEntry"
T
tangwei12 已提交
1218
        ]:
1219
            raise ValueError(
1220
                "entry must be instance in [paddle.distributed.ProbabilityEntry, paddle.distributed.CountFilterEntry, paddle.distributed.ShowClickEntry]"
T
tangwei12 已提交
1221 1222
            )
        entry_str = entry._to_attr()
1223

1224 1225 1226
    if slot == None:
        slot = 0

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    helper.append_op(type='lookup_table',
                     inputs={
                         'Ids': input,
                         'W': w
                     },
                     outputs={'Out': tmp},
                     attrs={
                         'padding_idx': padding_idx,
                         'is_sparse': True,
                         'is_distributed': True,
                         'remote_prefetch': True,
                         'is_test': is_test,
                         'entry': entry_str,
1240 1241
                         'table_class': table_class,
                         'slot': slot
1242
                     })
1243 1244 1245
    return tmp


C
Chengmo 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
    """
    **Tdm Child**
     According to the input node_id on the given tree, return the corresponding child node_id and 
      whether child is a leaf node by leaf_mask value.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            x = [[2], [3]]
            node_nums = 7
            child_nums = 2

          we get:
            child = [[5, 6],
                     [0, 0]]
            leaf_mask = [[1, 1],
                         [0, 0]]
    Args:
        x(Variable): Variable contained the node_id information, dtype support int32/int64.
        node_nums(int): Number of total nodes.
        child_nums(int): Maximum number of child nodes per node.
        param_attr(ParamAttr): To specify the tdm-tree-info parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in: ref: `api_fluid_ParamAttr`, should
            has shape(node_nums, 3 + child_nums), dtype support int32/int64. 
            The dimension[1] of tdm-tree-info contains the following: 
            1. Item_id(int, shape(1)), if node is a leaf node, give its item_id corresponding to node_id, else give 0.
            2. Layer_id(int, shape(1)), indicates which layer the node is on.
            3. Parent_id(int, shape(1)), node's parent node.
            4. Child_id(int, shape(child_nums)), all child node's node_id of this node should be given. 
            If the number of child nodes is insufficient, padding 0 until child nums equal to child_nums
        dtype(str): The data type of output child and leaf_mask, support int32/int64.

    Returns:
        tuple: A tuple including input node's child(Variable) and leaf_mask(Variable). 
            If child is a leaf node, leaf_mask equal ot 1, otherwise equal to 0.

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        tree_info = [[0,0,0,1,2],
                     [0,1,0,3,4],[0,1,0,5,6],
                     [0,2,1,0,0],[1,2,1,0,0],[2,2,2,0,0],[3,2,2,0,0]]
        tree_info_np = np.array(tree_info)
        tree_info_np = np.reshape(tree_info_np, (7,5))
        node_nums = 7
        child_nums = 2
        child, leaf_mask  = fluid.contrib.layers.tdm_child(x, node_nums, child_nums,
                                param_attr=fluid.ParamAttr(
                                    initializer=fluid.initializer.NumpyArrayInitializer(
                                                                            tree_info_np)))
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[2],[3]]).reshape((2,1)).astype("int32")
        child_res, leaf_mask_res = exe.run(feed={"x":xx}, fetch_list=[child, leaf_mask])
     """
    helper = LayerHelper("tdm_child", **locals())
    check_dtype(dtype, 'dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_child')
    c_dtype = convert_np_dtype_to_dtype_(dtype)
1309 1310 1311 1312
    tree_info = helper.create_parameter(attr=helper.param_attr,
                                        shape=[node_nums, 3 + child_nums],
                                        dtype=dtype,
                                        default_initializer=Constant(0))
C
Chengmo 已提交
1313 1314 1315 1316 1317
    tree_info.stop_gradient = True

    child = helper.create_variable_for_type_inference(dtype=dtype)
    leaf_mask = helper.create_variable_for_type_inference(dtype=dtype)

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    helper.append_op(type='tdm_child',
                     inputs={
                         'X': x,
                         'TreeInfo': tree_info
                     },
                     outputs={
                         'Child': child,
                         'LeafMask': leaf_mask
                     },
                     attrs={
                         'child_nums': child_nums,
                         'dtype': c_dtype
                     },
                     stop_gradient=True)
C
Chengmo 已提交
1332
    return (child, leaf_mask)
S
ShenLiang 已提交
1333 1334


C
Chengmo 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
def tdm_sampler(x,
                neg_samples_num_list,
                layer_node_num_list,
                leaf_node_num,
                tree_travel_attr=None,
                tree_layer_attr=None,
                output_positive=True,
                output_list=True,
                seed=0,
                tree_dtype='int32',
                dtype='int32'):
    """
    **Tdm Sampler**
    According to the input positive samples at leaf node(x), do negative sampling layer by layer on the given tree.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path (exclude root node)
            layer_list = [[1, 2], [3, 4, 5, 6]] # two layer (exclude root node)

            x = [[0], [1], [2], [3]] # Corresponding to leaf node [[3], [4], [5], [6]]
            neg_samples_num_list = [0, 0] # negative sample nums = 0
            layer_node_num_list = [2, 4]
            leaf_node_num = 4
            output_list = False

          we get:
            out = [[1, 3], [1, 4], [2, 5], [2, 6]]
            labels = [[1, 1], [1, 1], [1, 1], [1, 1]]
            mask = [[1, 1], [1, 1], [1, 1], [1, 1]]

    Args:
        x (Variable): Variable contained the item_id(corresponding to leaf node) information, dtype support int32/int64.
        neg_samples_num_list (list(int)): Number of negative samples per layer.
        layer_node_num_list (list(int)): Number of nodes per layer, must has same shape with neg_samples_num_list.
        leaf_node_num (int): Number of leaf nodes.
        tree_travel_attr (ParamAttr): To specify the tdm-travel parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should 
            has shape (leaf_node_num, len(layer_node_num_list)), dtype support int32/int64.
        tree_layer_attr (ParamAttr): To specify the tdm-layer parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should 
            has shape (node_num, 1), dtype support int32/int64.
        output_positive (bool): Whether to output positive samples (includ label and mask )at the same time.
        output_list (bool): Whether to divide the output into layers and organize it into list format.
        seed (int): The number of random seed.
        tree_dtype(np.dtype|core.VarDesc.VarType|str): The dtype of tdm-travel and tdm-layer, support int32/int64
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype of output(sampling results, labels and masks) 

    Returns:
        tuple: A tuple including sampling results, corresponding labels and masks. if output_positive = True, sampling
            result  will include both positive and negative samples. If sampling reseult is a positive sample, the label is 1, 
            and if it is a negative sample, it is 0. If the tree is unbalanced, in order to ensure the consistency of the 
            sampling result shape, the padding sample's mask = 0, the real sample's mask value = 1. 
            If output_list = True, the result will organize into list format specified by layer information.
            Output variable have same type with tdm-travel and tdm-layer parameter(tree_dtype).

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path, shape(leaf_node_num, layer_num)
        layer_list_flat = [[1], [2], [3], [4], [5], [6]] # shape(node_nums, 1)

        neg_samples_num_list = [0, 0] # negative sample nums = 0
        layer_node_num_list = [2, 4] #two layer (exclude root node)
        leaf_node_num = 4

        travel_array = np.array(travel_list)
        layer_array = np.array(layer_list_flat)

        sample, label, mask = fluid.contrib.layers.tdm_sampler(
            x,
            neg_samples_num_list,
            layer_node_num_list,
            leaf_node_num,
            tree_travel_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    travel_array)),
            tree_layer_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    layer_array)),
            output_positive=True,
            output_list=True,
            seed=0,
            tree_dtype='int32')

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[0],[1]]).reshape((2,1)).astype("int32")

        exe.run(feed={"x":xx})

    """
    helper = LayerHelper("tdm_sampler", **locals())
    check_dtype(tree_dtype, 'tree_dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_sampler')
    check_dtype(dtype, 'dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_sampler')
    c_dtype = convert_np_dtype_to_dtype_(dtype)

    if len(neg_samples_num_list) != len(layer_node_num_list):
        raise ValueError(
            "The shape of negative samples list must match the shape of layers. "
            "But received len of neg_samples_num_list: {},"
            "and len of layer_node_num_list: {}, please check your input.".
            format(len(neg_samples_num_list), len(layer_node_num_list)))
    assert leaf_node_num is not None, "leaf_node_num should not be None here."

    layer_nums = 0
    node_nums = 0
    tree_layer_offset_lod = [0]
    for layer_idx, layer_node_num in enumerate(layer_node_num_list):
        layer_nums += 1
        node_nums += layer_node_num
        tree_layer_offset_lod.append(node_nums)
        if neg_samples_num_list[layer_idx] >= layer_node_num_list[layer_idx]:
            raise ValueError(
                "The number of negative samples must be less than the number of nodes "
                "in the layer {}, But received negative nums {}, and num of node at layer {} "
                "is {}, please check your input.".format(
1458 1459
                    layer_idx, neg_samples_num_list[layer_idx], layer_idx,
                    layer_node_num_list[layer_idx]))
C
Chengmo 已提交
1460 1461 1462
    assert leaf_node_num < node_nums, "leaf_node_num must be less than total node nums."

    travel_shape = [leaf_node_num, layer_nums]
1463 1464 1465 1466
    travel = helper.create_parameter(attr=tree_travel_attr,
                                     shape=travel_shape,
                                     dtype=tree_dtype,
                                     default_initializer=Constant(0))
C
Chengmo 已提交
1467 1468

    layer_shape = [node_nums, 1]
1469 1470 1471 1472
    layer = helper.create_parameter(attr=tree_layer_attr,
                                    shape=layer_shape,
                                    dtype=tree_dtype,
                                    default_initializer=Constant(0))
C
Chengmo 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

    out = helper.create_variable_for_type_inference(dtype=dtype)
    out.stop_gradient = True

    labels = helper.create_variable_for_type_inference(dtype=dtype)
    labels.stop_gradient = True

    mask = helper.create_variable_for_type_inference(dtype=dtype)
    mask.stop_gradient = True

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
    helper.append_op(type='tdm_sampler',
                     inputs={
                         "X": x,
                         "Travel": travel,
                         "Layer": layer
                     },
                     outputs={
                         'Out': out,
                         'Labels': labels,
                         'Mask': mask
                     },
                     attrs={
                         'neg_samples_num_list': neg_samples_num_list,
                         'output_positive': output_positive,
                         'layer_offset_lod': tree_layer_offset_lod,
                         'seed': seed,
                         'dtype': c_dtype
                     })
C
Chengmo 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

    if output_list:
        output_list = []
        labels_list = []
        mask_list = []
        start_offset = 0
        positive_flag = 1
        if not output_positive:
            positive_flag = 0

        for layer_sample_num in neg_samples_num_list:
            end_offset = start_offset + \
                layer_sample_num + positive_flag
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
            layer_samples = slice(out,
                                  axes=[1],
                                  starts=[start_offset],
                                  ends=[end_offset])
            layer_labels = slice(labels,
                                 axes=[1],
                                 starts=[start_offset],
                                 ends=[end_offset])
            layer_mask = slice(mask,
                               axes=[1],
                               starts=[start_offset],
                               ends=[end_offset])
C
Chengmo 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

            layer_samples = reshape(layer_samples,
                                    [-1, layer_sample_num + positive_flag, 1])
            layer_samples.stop_gradient = True

            layer_labels = reshape(layer_labels,
                                   [-1, layer_sample_num + positive_flag, 1])
            layer_labels.stop_gradient = True

            layer_mask = reshape(layer_mask,
                                 [-1, layer_sample_num + positive_flag, 1])
            layer_mask.stop_gradient = True

            output_list.append(layer_samples)
            labels_list.append(layer_labels)
            mask_list.append(layer_mask)
            start_offset = end_offset

        out = output_list
        labels = labels_list
        mask = mask_list

    return (out, labels, mask)


S
ShenLiang 已提交
1551 1552 1553 1554
def rank_attention(input,
                   rank_offset,
                   rank_param_shape,
                   rank_param_attr,
1555 1556
                   max_rank=3,
                   max_size=0):
S
ShenLiang 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    """
    **Rank Attention layer**
    This Op can calculate rank attention between input and rank_param, and 
    rank_param gives the organization of data. Notice: It currently supports
    GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        rank_offset: Tensor with data type int32.
        rank_para_shape: The shape of rank_param.
        rank_param_attr: Attribute initializer of rank_param.
        max_rank: The max rank of input's ranks.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
           import numpy as np
C
Chengmo 已提交
1575

S
ShenLiang 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
           input = fluid.data(name="input", shape=[None, 2], dtype="float32")
           rank_offset = fluid.data(name="rank_offset", shape=[None, 7], dtype="int32")
           out = fluid.contrib.layers.rank_attention(input=input,
                                                     rank_offset=rank_offset,
                                                     rank_param_shape=[18,3],
                                                     rank_param_attr=
                                                       fluid.ParamAttr(learning_rate=1.0,
                                                                     name="ubm_rank_param.w_0",
                                                                     initializer=
                                                                     fluid.initializer.Xavier(uniform=False)),
1586 1587
                                                      max_rank=3,
                                                      max_size=0)
S
ShenLiang 已提交
1588 1589 1590 1591 1592 1593
    """
    helper = LayerHelper('rank_attention', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    input_shape = input.shape
    assert input_shape[1] * max_rank * max_rank == rank_param_shape[0]

1594 1595 1596
    rank_param = helper.create_parameter(attr=rank_param_attr,
                                         shape=rank_param_shape,
                                         dtype=dtype)
S
ShenLiang 已提交
1597 1598 1599
    rank_param.stop_gradient = False

    output = helper.create_variable_for_type_inference(dtype)
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
    input_help = helper.create_variable_for_type_inference(dtype=dtype,
                                                           stop_gradient=True)
    ins_rank = helper.create_variable_for_type_inference(dtype=dtype,
                                                         stop_gradient=True)

    helper.append_op(type="rank_attention",
                     inputs={
                         "X": input,
                         "RankOffset": rank_offset,
                         "RankParam": rank_param
                     },
                     outputs={
                         "Out": output,
                         "InputHelp": input_help,
                         "InsRank": ins_rank
                     },
                     attrs={
                         "MaxRank": max_rank,
                         "MaxSize": max_size
                     })
S
ShenLiang 已提交
1620
    return output
S
ShenLiang 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671


def batch_fc(input, param_size, param_attr, bias_size, bias_attr, act=None):
    """
    **Batch FC layer**
    This Op can calculate BatchFC. This is similar to matmul op, 
    except that the bias and relu activation layers are added. 
    Notice: It currently supports GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        param_size: The size of w.
        param_attr: Attribute initializer of w.
        bias_size: The size of bias.
        bias_attr: Attribute initializer of bias.
        act: Activation to be applied to the output of this layer.

    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
           
           input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
           out = fluid.contrib.layers.batch_fc(input=input,
                                               param_size=[16, 3, 10],
                                               param_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="w_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                               bias_size=[16, 10],
                                               bias_attr=
                                                 fluid.ParamAttr(learning_rate=1.0,
                                                               name="b_0",
                                                               initializer=
                                                               fluid.initializer.Xavier(uniform=False)),
                                                   act="relu")
    """

    helper = LayerHelper("batch_fc", **locals())
    check_type(input, 'input', (Variable), 'batch_fc')
    input_shape = input.shape
    assert input_shape[0] == param_size[0]
    assert input_shape[2] == param_size[1]
    assert param_size[2] == bias_size[1]
    assert input_shape[0] == bias_size[0]

    dtype = helper.input_dtype()
    check_dtype(dtype, 'input', ['float32', 'float64'], 'batch_fc')

1672 1673 1674 1675 1676 1677 1678 1679
    w = helper.create_parameter(attr=param_attr,
                                shape=param_size,
                                dtype=dtype,
                                is_bias=False)
    b = helper.create_parameter(attr=bias_attr,
                                shape=bias_size,
                                dtype=dtype,
                                is_bias=False)
S
ShenLiang 已提交
1680
    pre_act = helper.create_variable_for_type_inference(dtype)
1681 1682 1683 1684 1685 1686 1687
    helper.append_op(type="batch_fc",
                     inputs={
                         "Input": input,
                         "W": w,
                         "Bias": b
                     },
                     outputs={"Out": pre_act})
S
ShenLiang 已提交
1688
    return helper.append_activation(pre_act)
S
ShenLiang 已提交
1689 1690 1691


def _pull_box_extended_sparse(input, size, extend_size=64, dtype='float32'):
1692
    r"""
S
ShenLiang 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    **Pull Box Extended Sparse Layer**
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        extend_size(int): The embedding size parameter in extended dim, 
            which indicates the size of each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
      float32 now.
    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb, emb_ex = fluid.contrib.layers._pull_box_extended_sparse(input=data, size=8, extend_size=128)
    """
    helper = LayerHelper('pull_box_extended_sparse', **locals())
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    outs_extend = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
    helper.append_op(type='pull_box_extended_sparse',
                     inputs={'Ids': inputs},
                     outputs={
                         'Out': outs,
                         'OutExtend': outs_extend
                     },
                     attrs={
                         'emb_size': size,
                         'emb_extended_size': extend_size
                     })
S
ShenLiang 已提交
1736 1737 1738
    if len(outs) == 1:
        return outs[0], outs_extend[0]
    return outs, outs_extend
L
LielinJiang 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777


def bilateral_slice(x, guide, grid, has_offset, name=None):
    """
    :alias_main: paddle.nn.functional.bilateral_slice
	:alias: paddle.nn.functional.bilateral_slice,paddle.nn.functional.vision.bilateral_slice
	:old_api: paddle.fluid.layers.bilateral_slice

    This operation implements bilateral slicing on the input according to the guide map.
    For more information of bilateral slicing, please refer to Deep Bilateral Learning for Real-Time Image Enhancement <https://groups.csail.mit.edu/graphics/hdrnet/data/hdrnet.pdf>_

    Args:
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 and float64.
        guide(Variable): Input grid tensor of shape [N, H, W]. The
                        data type is float32 and float64.
        grid(Variable): Input grid tensor of shape [N, C, D, H, W]. The
                        data type is float32 and float64.
        has_offset(bool): Whether to slice with affine offset.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Variable: Output of shape [N, C, H, W]. The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.data(name='x', shape=[None, 3, 101, 60], dtype='float32')
            guide = fluid.data(name='guide', shape=[None, 101, 60], dtype='float32')
            grid = fluid.data(name='grid', shape=[None, 12, 8, 10, 6], dtype='float32')

            # without offset
1778
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=False)
L
LielinJiang 已提交
1779 1780
            
            # has offset
1781
            output = fluid.contrib.bilateral_slice(x, guide, grid, has_offset=True)
L
LielinJiang 已提交
1782 1783

    """
J
Jiabin Yang 已提交
1784
    if paddle.fluid._non_static_mode():
1785
        attrs = ('has_offset', has_offset)
W
wanghuancoder 已提交
1786
        return getattr(_C_ops, "bilateral_slice")(x, grid, guide, *attrs)
L
LielinJiang 已提交
1787 1788 1789 1790 1791 1792

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'bilateral_slice')
    check_variable_and_dtype(guide, 'guide', ['float32', 'float64'],
                             'bilateral_slice')
    check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
                             'bilateral_slice')
1793
    helper = LayerHelper("bilateral_slice", **locals())
L
LielinJiang 已提交
1794 1795
    out = helper.create_variable_for_type_inference(x.dtype)
    inputs = {'X': x, 'Guide': guide, 'Grid': grid}
1796 1797 1798 1799
    helper.append_op(type='bilateral_slice',
                     inputs=inputs,
                     attrs={'has_offset': has_offset},
                     outputs={'Out': out})
L
LielinJiang 已提交
1800
    return out
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856


def correlation(x,
                y,
                pad_size,
                kernel_size,
                max_displacement,
                stride1,
                stride2,
                corr_type_multiply=1):
    """

    This operation compute correlation of two tensor.
    For more information of correlation, please refer to PWC-Net: 
    CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume 
    <https://arxiv.org/pdf/1709.02371.pdf>_

    Args:
        x(Tensor): The input x is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        y(Tensor): The input y is 4-D Tensor with shape [N, C, H, W]. The data type is float32 and float64.
        pad_size(int): Pad size. The data type is int.
        max_displacement(int): Max displacement. The data type is int.
        stride1(int): stride size of x. The data type is int.
        stride2(int): stride size of y. The data type is int.
        corr_type_multiply(int, optional): The type of multiply. The data type is int. Default: 1.

    Returns:
        Tensor: The data type is same as input tensor.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

            x1 = fluid.layers.data(name='x1',
                               shape=x_shape,
                               dtype=x_type,
                               append_batch_size=False)
            x2 = fluid.layers.data(name='x2',
                                shape=x_shape,
                                dtype=x_type,
                                append_batch_size=False)


            out = fluid.contrib.correlation(
                            x1,
                            x2,
                            pad_size=4,
                            kernel_size=1,
                            max_displacement=4,
                            stride1=1,
                            stride2=1)

    """

J
Jiabin Yang 已提交
1857
    if paddle.fluid._non_static_mode():
1858 1859 1860
        attrs = ("pad_size", pad_size, "kernel_size", kernel_size,
                 "max_displacement", max_displacement, "stride1", stride1,
                 "stride2", stride2, "corr_type_multiply", corr_type_multiply)
W
wanghuancoder 已提交
1861
        output = getattr(_C_ops, "correlation")(x, y, *attrs)
1862
    else:
1863 1864
        helper = LayerHelper("correlation", **locals())
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
        helper.append_op(type="correlation",
                         inputs={
                             "Input1": x,
                             "Input2": y
                         },
                         attrs={
                             "pad_size": pad_size,
                             "kernel_size": kernel_size,
                             "max_displacement": max_displacement,
                             "stride1": stride1,
                             "stride2": stride2,
                             "corr_type_multiply": corr_type_multiply
                         },
                         outputs={"Output": output})
1879
    return output
Z
Zhang Ting 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891


def fused_bn_add_act(x,
                     y,
                     momentum=0.9,
                     epsilon=1e-05,
                     param_attr=None,
                     bias_attr=None,
                     moving_mean_name=None,
                     moving_variance_name=None,
                     act=None,
                     name=None):
1892
    r"""
Z
Zhang Ting 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
    This Op performs batch norm on input x, and adds the result to input y. Then
    it performs activation on the sum. The data format of inputs must be NHWC
    `[batch, in_height, in_width, in_channels]`.

    Args:
        x(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        y(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
            is float16.
        momentum(float|Tensor, optional): The value used for the moving_mean and
            moving_var computation. This should be a float number or a tensor with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
	        will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	        If the Initializer of the param_attr is not set, the parameter is initialized
	        with Xavier. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
	        will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	        If the Initializer of the bias_attr is not set, the bias is initialized zero.
	        Default: None.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
            will save global mean with the string.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance.
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
            will save global variance with the string.
        act(string, optional): Activation type, linear|relu|prelu|...
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.

    Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            def build_program(main_program, startup_program):
                with fluid.program_guard(main_program, startup_program):
                    x = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
                    y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                    conv1_1 = fluid.layers.conv2d(
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
                    conv1_2 = fluid.layers.conv2d(
                        input=x,
                        filter_size=3,
                        num_filters=32,
                        stride=1,
                        padding=1,
                        act=None,
                        bias_attr=False,
                        data_format='NHWC')
                    bn = fluid.layers.batch_norm(
                        input=conv1_1,
                        act=None,
                        data_layout='NHWC')
                    fused_bn_add_act = fluid.contrib.layers.fused_bn_add_act(conv1_2, bn)
                    prediction = fluid.layers.fc(input=fused_bn_add_act, size=10, act='softmax')
                    loss = fluid.layers.cross_entropy(input=prediction, label=y)
                    loss = fluid.layers.mean(loss)
                    sgd = fluid.optimizer.SGD(learning_rate=0.001)
                    sgd = fluid.contrib.mixed_precision.decorate(
                        sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
                    sgd.minimize(loss)

                return x, y, loss

            iters = 5
            batch_size = 16
            support_gpu = fluid.is_compiled_with_cuda()
            if support_gpu:
                main_program = fluid.Program()
                startup_program = fluid.Program()
                place = fluid.CUDAPlace(0)
                x, y, loss = build_program(main_program, startup_program)
  
                feeder = fluid.DataFeeder(feed_list=[x, y], place=place)
                train_reader = paddle.batch(
                    paddle.dataset.mnist.train(), batch_size=batch_size)
                exe = fluid.Executor(place)
                scope = fluid.Scope()
                with fluid.scope_guard(scope):
                    exe.run(startup_program)
                    for _ in range(iters):
                        data = next(train_reader())
                        loss_v = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss])
    """
    helper = LayerHelper('fused_bn_add_act', **locals())

    check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
                             'fused_bn_add_act')
    check_variable_and_dtype(y, 'input', ['float16', 'float32', 'float64'],
                             'fused_bn_add_act')
    bn_param_dtype = core.VarDesc.VarType.FP32

    x_shape = x.shape
    channel_num = x_shape[-1]
    param_shape = [channel_num]

    # create parameter
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
    scale = helper.create_parameter(attr=helper.param_attr,
                                    shape=param_shape,
                                    dtype=bn_param_dtype,
                                    default_initializer=Constant(1.0))
    bias = helper.create_parameter(attr=helper.bias_attr,
                                   shape=param_shape,
                                   dtype=bn_param_dtype,
                                   is_bias=True)
    mean = helper.create_parameter(attr=ParamAttr(name=moving_mean_name,
                                                  initializer=Constant(0.0),
                                                  trainable=False),
                                   shape=param_shape,
                                   dtype=bn_param_dtype)
Z
Zhang Ting 已提交
2018
    mean.stop_gradient = True
2019 2020 2021 2022 2023
    variance = helper.create_parameter(attr=ParamAttr(name=moving_variance_name,
                                                      initializer=Constant(1.0),
                                                      trainable=False),
                                       shape=param_shape,
                                       dtype=bn_param_dtype)
Z
Zhang Ting 已提交
2024 2025 2026 2027 2028 2029 2030
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
2031 2032
    saved_mean = helper.create_variable_for_type_inference(dtype=bn_param_dtype,
                                                           stop_gradient=True)
Z
Zhang Ting 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
    saved_variance = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    reserve_space = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.FP16, stop_gradient=True)
    batch_norm_out = helper.create_variable_for_type_inference(
        core.VarDesc.VarType.FP16)

    inputs = {
        "X": x,
        "Z": y,
        "Scale": scale,
        "Bias": bias,
    }
    attrs = {"epsilon": epsilon, 'momentum': momentum}

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance,
        "ReserveSpace": reserve_space
    }

2057 2058 2059 2060
    helper.append_op(type="fused_bn_add_activation",
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
Z
Zhang Ting 已提交
2061 2062

    return batch_norm_out
2063 2064 2065 2066 2067 2068 2069 2070


def pow2_decay_with_linear_warmup(warmup_steps,
                                  total_steps,
                                  base_lr,
                                  end_lr,
                                  dtype='float32',
                                  name=None):
J
Jiabin Yang 已提交
2071
    if paddle.fluid._non_static_mode():
2072
        raise NotImplementedError(
Z
Zeng Jinle 已提交
2073
            "pow2_decay_with_linear_warmup does not support dygraph mode yet.")
2074 2075 2076

    helper = LayerHelper("pow2_decay_with_linear_warmup", **locals())
    lr = helper.create_global_variable(persistable=True, dtype=dtype, shape=[1])
Z
Zeng Jinle 已提交
2077 2078
    helper.set_variable_initializer(
        lr, Constant(value=float(base_lr) / warmup_steps))
2079

2080 2081 2082
    step = helper.create_global_variable(persistable=True,
                                         dtype='int64',
                                         shape=[1])
2083 2084 2085
    helper.set_variable_initializer(step, Constant(value=0))
    assert warmup_steps <= total_steps, "warmup_steps cannot be larger than total_steps"

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    helper.append_op(type="pow2_decay_with_linear_warmup",
                     inputs={
                         "LearningRate": lr,
                         "Step": step
                     },
                     outputs={
                         "LearningRateOut": lr,
                         "StepOut": step
                     },
                     attrs={
                         "warmup_steps": warmup_steps,
                         "total_steps": total_steps,
                         "base_lr": base_lr,
                         "end_lr": end_lr,
                     })
2101
    return lr