utils.py 59.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import ast
18
import astor
19 20
import atexit
import copy
21
import collections
22
from paddle.utils import gast
23 24 25 26
import inspect
import os
import six
import tempfile
27
import textwrap
28
import numpy as np
29

30
import paddle
31
from paddle.fluid import unique_name
32
from paddle.fluid.data_feeder import convert_dtype
33 34
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid import core
35

36 37 38 39 40
# Note(Aurelius): Do not forget the dot `.` to distinguish other
# module such as paddlenlp.
PADDLE_MODULE_PREFIX = 'paddle.'
DYGRAPH_MODULE_PREFIX = 'paddle.fluid.dygraph'
DYGRAPH_TO_STATIC_MODULE_PREFIX = 'paddle.fluid.dygraph.dygraph_to_static'
41 42 43
GET_ARGS_FUNC_PREFIX = 'get_args'
SET_ARGS_FUNC_PREFIX = 'set_args'
ARGS_NAME = '__args'
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

class BaseNodeVisitor(gast.NodeVisitor):
    """
    Implement customized NodeVisitor inherited from gast.NodeVisitor. 
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
def data_layer_not_check(name, shape, dtype='float32', lod_level=0):
    """
    This function creates a Tensor on the global block. The created Tensor
    doesn't check the dtype and the shape of feed data because dygraph input
    data can be various-length. This API is used in translating dygraph into
    static graph.

     Note: 
        The default :code:`stop_gradient` attribute of the Tensor created by
        this API is true, which means the gradient won't be passed backward
        through the data Tensor. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

    Args:
       name (str): The name/alias of the Tensor, see :ref:`api_guide_Name`
           for more details.
       shape (list|tuple): List|Tuple of integers declaring the shape. You can
           set "None" at a dimension to indicate the dimension can be of any
           size. For example, it is useful to set changeable batch size as "None" 
       dtype (np.dtype|VarType|str, optional): The type of the data. Supported
           dtype: bool, float16, float32, float64, int8, int16, int32, int64,
           uint8. Default: float32
       lod_level (int, optional): The LoD level of the LoDTensor. Usually users
           don't have to set this value. For more details about when and how to
           use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0

    Returns:
        Tensor: The global Tensor that gives access to the data.
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in six.moves.range(len(shape)):
        if shape[i] is None:
            shape[i] = -1

    return helper.create_variable(name=name,
                                  shape=shape,
                                  dtype=dtype,
                                  type=core.VarDesc.VarType.LOD_TENSOR,
                                  stop_gradient=True,
                                  lod_level=lod_level,
                                  is_data=True,
                                  need_check_feed=False)


112
# imp is deprecated in python3
T
tianshuo78520a 已提交
113
from importlib.machinery import SourceFileLoader
114

115 116 117 118 119 120 121 122 123 124
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

125
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
126 127
FOR_ITER_TUPLE_PREFIX = '__for_loop_iter_tuple'
FOR_ITER_TUPLE_INDEX_PREFIX = '__for_loop_iter_tuple_index'
128
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
129
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
130
FOR_ITER_ZIP_TO_LIST_PREFIX = '__for_loop_iter_zip'
131

132 133 134 135 136 137 138 139
# FullArgSpec is valid from Python3. Defined a Namedtuple to
# to make it available in Python2.
FullArgSpec = collections.namedtuple('FullArgSpec', [
    'args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults',
    'annotations'
])


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
class UndefinedVar:

    def __init__(self, name):
        self.name = name

    def check(self):
        raise UnboundLocalError(
            "local variable '{}' should be created before using it.")


def saw(x):
    if isinstance(x, UndefinedVar):
        return x.check()
    else:
        return x


157 158 159 160 161
def getfullargspec(target):
    if hasattr(inspect, "getfullargspec"):
        return inspect.getfullargspec(target)
    else:
        argspec = inspect.getargspec(target)
162 163 164 165 166 167 168
        return FullArgSpec(args=argspec.args,
                           varargs=argspec.varargs,
                           varkw=argspec.keywords,
                           defaults=argspec.defaults,
                           kwonlyargs=[],
                           kwonlydefaults=None,
                           annotations={})
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190


def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
    fullargspec = getfullargspec(function)
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
        default_kwarg_names = arg_names[-len(default_values):]
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
191 192 193 194 195 196 197 198 199
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
    fullargspec = getfullargspec(function)
    varargs = fullargspec.varargs
    return varargs


200 201 202 203 204 205 206 207
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

208
    For some unhashable objects, such as `dict/list/set/np.ndarray`,applying hash function by using their values.
209
    """
210
    if isinstance(x, (tuple, list, set)):
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

228

229 230 231 232 233 234 235
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
236 237 238 239 240 241 242 243

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
244
    try:
245 246 247 248 249
        # TODO(liym27):
        #  Consider a better to import modules like:
        #  source_file = inspect.getfile(dyfunc)
        #  import_statements = ImportVisitor(source_file).transform()
        #  import_str = "".join(import_statements)
250
        import paddle
L
liym27 已提交
251
        import paddle.fluid as fluid
252
        import paddle.fluid.dygraph as dygraph
L
liym27 已提交
253
        import paddle.fluid.layers as layers
254
        import paddle.jit.dy2static as _jst
255

256
        from paddle.fluid.dygraph import to_variable
257 258
        from paddle import to_tensor

259 260
        return eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, module_prefix))
261
    except Exception:
262 263 264 265
        return False


def is_dygraph_api(node):
266

267
    # Note: A api in module dygraph_to_static is not a real dygraph api.
268
    if is_api_in_module(node, DYGRAPH_TO_STATIC_MODULE_PREFIX):
269 270
        return False

271 272
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
273
    return is_api_in_module(node, DYGRAPH_MODULE_PREFIX)
274 275 276


def is_paddle_api(node):
277 278 279 280 281 282
    return is_api_in_module(node, PADDLE_MODULE_PREFIX)


def is_paddle_func(func):
    m = inspect.getmodule(func)
    return m is not None and m.__name__.startswith(PADDLE_MODULE_PREFIX)
283 284 285 286 287 288 289 290 291 292 293 294 295 296


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
        import numpy as np
        module_result = eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, "numpy"))
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
        if not module_result:
            return func_str.startswith("numpy.") or func_str.startswith("np.")
297
    except Exception:
298 299 300
        return False


L
liym27 已提交
301 302 303
def is_control_flow_to_transform(node,
                                 static_analysis_visitor=None,
                                 var_name_to_type=None):
304
    """
L
liym27 已提交
305 306
    Determines whether the node is a PaddlePaddle control flow statement which needs to
    be transformed into a static graph control flow statement.
307 308 309
    """
    assert isinstance(node, gast.AST), \
        "The type of input node must be gast.AST, but received %s." % type(node)
310 311 312
    visitor = IsControlFlowVisitor(node,
                                   static_analysis_visitor,
                                   node_var_type_map=var_name_to_type)
L
liym27 已提交
313 314
    need_to_transform = visitor.transform()
    return need_to_transform
315 316


317 318
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
319
    func_src = astor.to_source(gast.gast_to_ast(node.func))
320 321 322 323 324 325 326 327 328 329 330 331
    import paddle.fluid as fluid
    full_args = eval("inspect.getargspec({})".format(func_src))
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
332 333 334
        raise NotImplementedError(
            "Paddle dygraph API {} cannot be converted "
            "to static graph at present.".format(dygraph_class))
335 336 337 338 339 340 341 342 343 344


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
345 346
            gast.keyword(arg="num_flatten_dims",
                         value=gast.Constant(value=-1, kind=None)))
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

365 366 367 368 369 370 371 372 373
    node.func = gast.Attribute(attr=static_api,
                               ctx=gast.Load(),
                               value=gast.Attribute(attr='layers',
                                                    ctx=gast.Load(),
                                                    value=gast.Name(
                                                        ctx=gast.Load(),
                                                        id='fluid',
                                                        annotation=None,
                                                        type_comment=None)))
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

394
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
395 396 397
    import paddle.fluid as fluid
    if method_name == "__init__" or eval(
            "issubclass({}, fluid.dygraph.Layer)".format(class_src)):
398 399
        full_args = eval("inspect.getargspec({}.{})".format(
            class_src, method_name))
400 401 402 403 404 405 406 407 408 409 410
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
411 412 413


def create_api_shape_node(tensor_shape_node):
414 415 416 417 418
    assert isinstance(tensor_shape_node,
                      (gast.Name, gast.Attribute, gast.Subscript))

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
419
            func=gast.parse('paddle.shape').body[0].value,
420 421 422
            args=[tensor_shape_node],
            keywords=[])
        return api_shape_node
423 424 425

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
426
            func=gast.parse('paddle.shape').body[0].value,
427 428 429 430 431 432 433 434
            args=[tensor_shape_node.value],
            keywords=[])
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
435 436


437
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
438 439
    return gast.parse('%s = paddle.full(%s, "%s", %s)' %
                      (name, str(shape), str(value), dtype))
440 441 442 443 444 445 446 447 448


def get_attribute_full_name(node):
    assert isinstance(
        node,
        gast.Attribute), "Input non-Attribute node to get attribute full name"
    return astor.to_source(gast.gast_to_ast(node)).strip()


449
def generate_name_node(name_ids, ctx=gast.Load(), gen_tuple_if_single=False):
450
    """
451 452 453 454 455 456 457
    If name_ids is list or tuple or set with multiple strings, this function
    generates gast.Tuple of gast.Name.
    If the name_ids is single string or contains only 1 string, this function
    returns gast.Name if gen_tuple_if_single==False else returns gast.Tuple
    with only one gast.Name

    This function is used at several gast.Return statements.
458 459 460 461
    """
    if isinstance(name_ids, six.string_types):
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
462 463 464
        raise TypeError(
            'name_ids must be list or tuple or set, but received %s' %
            type(type(name_ids)))
465 466 467 468 469 470 471 472 473 474

    def create_node_for_name(name):
        if '.' not in name:
            return gast.Name(id=name,
                             ctx=ctx,
                             annotation=None,
                             type_comment=None)
        return gast.parse(name).body[0].value

    gast_names = [create_node_for_name(name_id) for name_id in name_ids]
475
    if len(gast_names) == 1 and not gen_tuple_if_single:
476 477 478 479 480 481 482 483 484 485 486 487 488
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
489 490
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
491 492
    else:
        nodes.append(gast.Return(value=None))
493 494 495 496 497 498
    func_def_node = gast.FunctionDef(name=name,
                                     args=input_args,
                                     body=nodes,
                                     decorator_list=[],
                                     returns=None,
                                     type_comment=None)
499 500 501
    return func_def_node


502 503 504 505 506 507 508 509
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


510 511 512 513 514 515 516 517 518 519
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


class RenameTransformer(gast.NodeTransformer):
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    def __init__(self, node):
        assert isinstance(
            node, gast.AST), "RenameTransformer only accepts gast.AST as input"
        self.root = node
        self.old_name = ""
        self.new_name = ""

    def rename(self, old_name, new_name):
        self.old_name = old_name
        self.new_name = new_name
        self.visit(self.root)

    def visit_Name(self, node):
        self.generic_visit(node)
        if node.id == self.old_name:
            node.id = self.new_name
        return node

    def visit_Attribute(self, node):
        self.generic_visit(node)
        attr_full_name = get_attribute_full_name(node)
        if attr_full_name == self.old_name:
            new_name_node = gast.parse(self.new_name).body[0].value
            return new_name_node
        return node


548
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
549 550
    """
    Transform modified AST of decorated function into python callable object.
551 552
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
553
    """
554

555
    def remove_if_exit(filepath):
556 557 558
        if os.path.exists(filepath):
            os.remove(filepath)

559
    source = ast_to_source_code(ast_root)
560
    source = _inject_import_statements() + source
561

562 563 564 565
    f = tempfile.NamedTemporaryFile(mode='w',
                                    suffix='.py',
                                    delete=False,
                                    encoding='utf-8')
566 567 568 569 570
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

    if delete_on_exit:
571 572
        atexit.register(lambda: remove_if_exit(f.name))
        atexit.register(lambda: remove_if_exit(f.name[:-3] + ".pyc"))
573

T
tianshuo78520a 已提交
574
    module = SourceFileLoader(module_name, f.name).load_module()
575
    func_name = dyfunc.__name__
W
WeiXin 已提交
576 577 578 579 580 581 582 583
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
584 585 586
        raise ValueError(
            'Function: %s doesn\'t exist in the Module transformed from AST.' %
            func_name)
587 588 589 590 591 592 593 594
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


595 596
def _inject_import_statements():
    import_statements = [
597
        "import paddle", "from paddle import Tensor",
598 599
        "import paddle.fluid as fluid", "import paddle.jit.dy2static as _jst",
        "from typing import *", "import numpy as np"
600 601 602 603
    ]
    return '\n'.join(import_statements) + '\n'


604 605 606 607 608
def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
609

610
    for k, v in six.iteritems(src_globals):
611 612 613
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
614 615


616 617 618 619 620 621
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
622 623
            "The type of 'function' should be a function or method, but received {}."
            .format(type(function).__name__))
624
    source_code_list, _ = inspect.getsourcelines(function)
625
    # Replace comments with blank lines so that error messages are not misplaced
626
    source_code_list = [
627 628
        line if not line.lstrip().startswith('#') else '\n'
        for line in source_code_list
629 630
    ]
    source_code = ''.join(source_code_list)
631 632 633 634 635 636
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


637 638
def ast_to_source_code(ast_node):
    """
639
    Transforms ast node into source code.
640 641 642 643 644 645 646 647 648
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
            "Type of ast_root should be gast.AST or ast.AST, but received %s." %
            type(ast_node))
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
    source_code = astor.to_source(ast_node)
    return source_code
L
liym27 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
    is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
                                        gast.For, gast.If, gast.While))
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
672 673 674
            if (isinstance(child, gast.Constant)
                    and child.value is None) or (isinstance(child, gast.Name)
                                                 and child.id == 'None'):
L
liym27 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
692
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
693
        6. calls `range` function in `for` statement and the argument of range is Tensor.
694 695
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

    def __init__(self,
                 ast_node,
                 static_analysis_visitor=None,
                 node_var_type_map=None):
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
            ast_node)
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
        self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
731 732 733 734 735 736 737 738
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
739 740 741 742 743 744 745 746 747
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
748 749 750 751 752 753 754 755 756 757 758 759 760 761
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
                if node.iter.func.id == "range" or node.iter.func.id == "enumerate":
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
762 763
            else:
                return
764 765 766
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
767
        else:
L
liym27 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
806
            self.visit(child)
L
liym27 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
            if name_id and isinstance(name_id, six.string_types):
                var_type = self.node_var_type_map.get(name_id, None)
856
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
857 858
                    return True
        # if not found, look up the node_to_wrapper_map by node.
859
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
860
        if wrapper_node is not None:
861
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
862 863 864 865 866 867
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
868 869 870 871


class NameNodeReplaceTransformer(gast.NodeTransformer):
    """
872
    This class replaces specified gast.Name node by replace_node.
873 874 875 876
    """

    def __init__(self, root_node, target_name, replace_node):
        assert isinstance(target_name, str)
877 878 879 880 881 882 883 884 885 886 887 888 889 890

        # NOTE(liym27):
        # Use gast.Name to replace gast.Name, otherwise, errors may occur.
        #
        # For examples:
        # If using a gast.Subscript to replace gast.Name, and the original gast.Name
        # is in the arguments of FunctionDef, an exception will be raised.
        #
        # ```
        # def func(x[i])) # x[i] can not be a argument
        #    # ...
        # ```

        assert isinstance(replace_node, gast.Name)
891 892 893 894 895 896 897 898 899 900
        self.target_name = target_name
        self.replace_node = replace_node

        self.visit(root_node)

    def visit_Name(self, node):
        if node.id == self.target_name:
            return self.replace_node
        return node

901 902 903 904 905 906 907 908 909 910
    def visit_Nonlocal(self, node):
        names = node.names

        def replace(s):
            if s == self.target_name: return self.replace_node.id
            return s

        node.names = list(map(replace, names))
        return node

911

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
class ForLoopTuplePreTransformer(gast.NodeTransformer):
    """
    ForNodeVisitor parses 3 type statements (Here var is VarBase(Tensor) or python variable):
        1). for x in range(var[*]|var.numpy()[*])
        2). for x in var|var.numpy()
        3). for i, x in enumerate(var|var.numpy())

        We chose these 3 types because they are easier (x can be variable name iterating in var).
        However, users can write tuples in Python for loop, such as
        1). for var1, var2 in var|var.numpy()
        2). for t in enumerate(var|var.numpy())
        2). for i, (var1, var2, va3) in enumerate(var|var.numpy())

        To handle these case, this method will do the rewrite tuple pre-process:
        1). Non-enumerate case: for var1, var2 in var|var.numpy() will be re-written as:
          for FOR_ITER_TUPLE_PREFIX_x in var | var.numpy():
            var1 = FOR_ITER_TUPLE_PREFIX_x[0]
            var2 = FOR_ITER_TUPLE_PREFIX_x[1]
        2). Enumerate out tuple case: for t in enumerate(var|var.numpy) will be rewritten as:
          for FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x in enumerate(var|var.numpy):
            t = (FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x)
        3). Enumerate inner tuple case: for i, (var1, (var2, va3)) in enumerate(var|var.numpy()) will
        be re-written as:
          for i, FOR_ITER_TUPLE_PREFIX_x in var | var.numpy():
            var1 = FOR_ITER_TUPLE_PREFIX_x[0]
            var2 = FOR_ITER_TUPLE_PREFIX_x[1][0]
            var3 = FOR_ITER_TUPLE_PREFIX_x[1][1]
    """

    def __init__(self, wrapper_root):
        self.wrapper_root = wrapper_root
        self.root = wrapper_root.node

    def transform(self):
        self.visit(self.root)

    def visit_For(self, node):
        if self.is_for_enumerate_iter(node):
            if isinstance(node.target, (gast.Name, gast.Attribute)):
                # Out tuple case
                out_tuple_name = ast_to_source_code(node.target).strip()
                tuple_iter_name = unique_name.generate(
                    FOR_ITER_TUPLE_INDEX_PREFIX)
                tuple_var_name = unique_name.generate(FOR_ITER_TUPLE_PREFIX)
956 957 958 959 960 961 962 963 964 965 966
                node.target = gast.Tuple(elts=[
                    gast.Name(id=tuple_iter_name,
                              ctx=gast.Store(),
                              annotation=None,
                              type_comment=None),
                    gast.Name(id=tuple_var_name,
                              ctx=gast.Store(),
                              annotation=None,
                              type_comment=None)
                ],
                                         ctx=gast.Store())
967 968
                node.body.insert(
                    0,
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
                    gast.Assign(targets=[
                        gast.Name(id=out_tuple_name,
                                  ctx=gast.Store(),
                                  annotation=None,
                                  type_comment=None)
                    ],
                                value=gast.Tuple(elts=[
                                    gast.Name(id=tuple_iter_name,
                                              ctx=gast.Load(),
                                              annotation=None,
                                              type_comment=None),
                                    gast.Name(id=tuple_var_name,
                                              ctx=gast.Load(),
                                              annotation=None,
                                              type_comment=None)
                                ],
                                                 ctx=gast.Load())))
            elif isinstance(node.target, (gast.List, gast.Tuple)) and len(
                    node.target.elts) >= 2 and isinstance(
988 989 990 991
                        node.target.elts[1], (gast.List, gast.Tuple)):
                # Inner tuple case
                inner_tuple_name = unique_name.generate(FOR_ITER_TUPLE_PREFIX)
                origin_inner_tuple_node = node.target.elts[1]
992 993 994 995
                node.target.elts[1] = gast.Name(id=inner_tuple_name,
                                                ctx=gast.Store(),
                                                annotation=None,
                                                type_comment=None)
996 997 998 999 1000 1001 1002
                node.body[0:0] = self.tuple_to_stmts(origin_inner_tuple_node,
                                                     inner_tuple_name)
        elif self.is_for_iter(node) and isinstance(node.target,
                                                   (gast.List, gast.Tuple)):
            # Non-enumrate case:
            tuple_name = unique_name.generate(FOR_ITER_TUPLE_PREFIX)
            origin_tuple_node = node.target
1003 1004 1005 1006
            node.target = gast.Name(id=tuple_name,
                                    ctx=gast.Store(),
                                    annotation=None,
                                    type_comment=None)
1007 1008 1009 1010 1011
            node.body[0:0] = self.tuple_to_stmts(origin_tuple_node, tuple_name)
        return node

    def tuple_to_stmts(self, node, tuple_name, idx=[]):
        if not isinstance(node, (gast.Tuple, gast.List)):
1012
            value_node_str = tuple_name
1013
            for i in idx:
1014 1015 1016 1017 1018 1019 1020
                value_node_str = value_node_str + "[{}]".format(i)

            node_str = ast_to_source_code(node).strip()
            assign_node_str = "{} = {}".format(node_str, value_node_str)
            assign_node = gast.parse(assign_node_str).body[0]
            return [assign_node]

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        # isinstance(node, (gast.Tuple, gast.List))
        ret = []
        for i, element in enumerate(node.elts):
            ret += self.tuple_to_stmts(node.elts[i], tuple_name, idx + [i])
        return ret

    def is_for_iter(self, for_node):
        assert isinstance(for_node,
                          gast.For), "Input node is not gast.For node."
        if isinstance(for_node.iter, (gast.Name, gast.Attribute)):
            return True
        elif isinstance(for_node.iter, gast.Call) and isinstance(
                for_node.iter.func,
                gast.Attribute) and for_node.iter.func.attr == 'numpy':
            return True
        elif isinstance(for_node.iter, gast.Subscript):
            return True
        else:
            return False

    def is_for_enumerate_iter(self, for_node):
        assert isinstance(for_node,
                          gast.For), "Input node is not gast.For node."
        return isinstance(for_node.iter, gast.Call) and isinstance(
            for_node.iter.func,
            gast.Name) and for_node.iter.func.id == "enumerate"


1049
class ForNodeVisitor(object):
1050
    """
1051
    This class parses python for statement, get transformed 3 statement components of for node
1052 1053 1054 1055 1056 1057 1058 1059
    three key statements:
        1). init_stmts: list[node], prepare nodes of for loop, may not only one
        2). cond_stmt: node, condition node to judge whether continue loop
        3). body_stmts: list[node], updated loop body, sometimes we should change
            the original statement in body, not just append new statement

    In this process, the semantics of for does not change.

1060
    Now only can parse 3 type statements (Here var is VarBase(Tensor) or python variable):
1061 1062 1063
        1). for x in range(var[*]|var.numpy()[*])
        2). for x in var|var.numpy()
        3). for i, x enumerate(var|var.numpy())
1064 1065 1066 1067 1068
    """

    def __init__(self, for_node):
        assert isinstance(
            for_node, gast.For
1069
        ), "Input node for the initialization of ForNodeVisitor is not gast.For node."
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        # 1. original for node
        self.node = for_node

        # 2. gast.For node main parts
        self.target = for_node.target
        # NOTE: type may be Node or list[Node]
        self.iter_args = for_node.iter if self.is_for_iter(
        ) else for_node.iter.args
        self.body = for_node.body

        # 3. key shared node or names
        # - x:
        #   - for x in range(***)
1083 1084
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
1085 1086 1087
        self.iter_var_name = self._get_iter_var_name()

        # - created index var to slice Variable: __for_loop_var_index_0
1088 1089
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
1090 1091
        self.iter_idx_name = unique_name.generate(FOR_ITER_INDEX_PREFIX)

1092
        # - created shape var to build loop condition: __for_loop_var_len_0
1093 1094 1095
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
        #   - for x in var
1096
        self.iter_var_len_name = unique_name.generate(FOR_ITER_VAR_LEN_PREFIX)
1097 1098 1099
        # - created zip to list var : __for_loop_iter_zip_0
        self.iter_zip_to_list_name = unique_name.generate(
            FOR_ITER_ZIP_TO_LIST_PREFIX)
1100

1101 1102 1103
        # - var.numpy()/var
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
1104 1105 1106
        self.iter_node = self._get_iter_node()

        # - enumeate i:
1107
        #   - for i, x enumerate(var|var.numpy())
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        self.enum_idx_name = self._get_enum_idx_name()

        # - range/enumerate args length
        self.args_length = None

    def parse(self):
        self._args_check()
        if self.is_for_range_iter():
            return self._parse_for_range_stmts()
        elif self.is_for_iter():
            return self._parse_for_stmts()
        elif self.is_for_enumerate_iter():
            return self._parse_for_enumerate_stmts()
        else:
1122
            return None
1123 1124

    def is_for_range_iter(self):
1125 1126 1127
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "range"
1128 1129

    def is_for_iter(self):
1130 1131
        if isinstance(self.node.iter,
                      (gast.Name, gast.Attribute, gast.List, gast.Tuple)):
1132 1133 1134 1135 1136
            return True
        elif isinstance(self.node.iter, gast.Call) and isinstance(
                self.node.iter.func,
                gast.Attribute) and self.node.iter.func.attr == 'numpy':
            return True
1137 1138
        elif isinstance(self.node.iter, gast.Subscript):
            return True
1139 1140
        else:
            return False
1141 1142

    def is_for_enumerate_iter(self):
1143 1144 1145
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "enumerate"
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

    def _args_check(self):
        if self.is_for_range_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 3, "range() function takes 1 to 3 arguments"
        elif self.is_for_enumerate_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 2, "enumerate() function takes 1 to 2 arguments"
        else:
            self.args_length = None

    def _parse_for_range_stmts(self):
        init_stmts = []
        init_stmts.append(self._build_index_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_stmts(self):
        init_stmts = []
1172
        init_stmts.extend(self._build_iter_node())
1173
        init_stmts.append(self._build_index_init_node())
1174
        init_stmts.append(self._build_var_len_assign_node())
1175 1176 1177 1178 1179 1180

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
1181 1182 1183 1184 1185

        # NOTE(liym27): Here add a gast.Assign, and the target of it is gast.Name.
        # In NameNodeReplaceTransformer, using gast.Name to replace gast.Name is safe.
        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
1186 1187
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
1188
                                       target_node)
1189 1190 1191 1192 1193 1194
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_enumerate_stmts(self):
        init_stmts = []
1195
        init_stmts.extend(self._build_iter_node())
1196
        init_stmts.append(self._build_index_init_node())
1197
        init_stmts.append(self._build_var_len_assign_node())
1198 1199 1200 1201 1202 1203 1204
        init_stmts.append(self._build_enum_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
1205 1206 1207

        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
1208 1209
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
1210 1211
                                       target_node)

1212 1213 1214 1215 1216 1217 1218 1219
        body_stmts.append(self._build_index_increase_node(step_node))
        body_stmts.append(self._build_enum_increase_node())

        return init_stmts, cond_stmt, body_stmts

    def _build_index_init_node(self):
        if self.is_for_range_iter():
            if self.args_length == 1:
1220
                index_init_value_str = '0'
1221
            else:
1222 1223
                index_init_value_str = ast_to_source_code(
                    self.iter_args[0]).strip()
1224 1225

            index_init_var_name = self.iter_var_name
1226
        else:
1227 1228 1229 1230 1231 1232 1233 1234
            index_init_value_str = '0'
            index_init_var_name = self.iter_idx_name

        index_init_node_source_str = "{target} = {value}".format(
            target=index_init_var_name, value=index_init_value_str)

        index_init_node = gast.parse(index_init_node_source_str).body[0]

1235 1236
        return index_init_node

1237 1238 1239 1240 1241
    def _build_var_len_assign_node(self):
        # get the length of iterable variable
        if isinstance(self.iter_node, gast.Call) and isinstance(
                self.iter_node.func,
                gast.Attribute) and self.iter_node.func.attr == 'numpy':
1242 1243
            iter_var_name = ast_to_source_code(
                self.iter_node.func.value).strip()
1244
        else:
1245 1246
            iter_var_name = ast_to_source_code(self.iter_node).strip()

1247
        convert_len_node_source_str = '{} = _jst.Len({})'.format(
1248 1249 1250 1251 1252
            self.iter_var_len_name, iter_var_name)

        convert_len_node = gast.parse(convert_len_node_source_str).body[0]

        return convert_len_node
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    def _build_iter_node(self):
        """
        Process special cases for iter_node inclue:
          - Case 1 (for zip):
            
            - for i, val in enumerate(zip(x, y))  # original code:
            
            - __for_loop_iter_zip_0 = list(zip(x, y))
            - for i, val in enumerate(__for_loop_iter_zip_0)
        """
        new_nodes = []
        if isinstance(self.iter_node, gast.Call) and isinstance(
                self.iter_node.func, gast.Name):
            if self.iter_node.func.id == 'zip':
                iter_var_name = ast_to_source_code(self.iter_node).strip()
                zip_to_list_str = "{target} = list({value})".format(
                    target=self.iter_zip_to_list_name, value=iter_var_name)
                zip_to_list_node = gast.parse(zip_to_list_str).body[0]
                new_nodes.append(zip_to_list_node)

1274 1275 1276 1277
                self.iter_node = gast.Name(id=self.iter_zip_to_list_name,
                                           ctx=gast.Load(),
                                           annotation=None,
                                           type_comment=None)
1278 1279 1280

        return new_nodes

1281 1282
    def _build_enum_init_node(self):
        if self.is_for_enumerate_iter() and self.args_length != 1:
1283 1284 1285 1286 1287 1288 1289
            init_value_str = ast_to_source_code(self.iter_args[1]).strip()
        else:
            init_value_str = '0'

        enum_init_node_source_str = "{} = {}".format(self.enum_idx_name,
                                                     init_value_str)
        enum_init_node = gast.parse(enum_init_node_source_str).body[0]
1290 1291 1292 1293 1294 1295 1296
        return enum_init_node

    def _build_compare_node(self):
        if self.is_for_range_iter():
            compare_node = self.iter_args[
                0] if self.args_length == 1 else self.iter_args[1]
        else:
1297 1298 1299 1300
            compare_node = gast.Name(id=self.iter_var_len_name,
                                     ctx=gast.Load(),
                                     annotation=None,
                                     type_comment=None)
1301 1302 1303 1304 1305
        return compare_node

    def _build_step_node(self):
        if self.is_for_range_iter():
            step_node = self.iter_args[
1306 1307
                2] if self.args_length == 3 else gast.Constant(value=1,
                                                               kind=None)
1308 1309 1310 1311 1312
        else:
            step_node = gast.Constant(value=1, kind=None)
        return step_node

    def _build_cond_stmt(self, step_node, compare_node):
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
        if not isinstance(step_node, (gast.Constant, gast.UnaryOp)):
            raise NotImplementedError(
                "Dynamic-to-Static only supports the step value is a constant or negative constant in 'for-range' statements, "
                "such as '2', '-3'. But received: '{}'. Please fix code to be compatible with Dynamic-to-Static."
                .format(ast_to_source_code(step_node).strip()))

        if isinstance(step_node, gast.UnaryOp) or step_node.value < 0:
            # eg:
            # range(max, min, -2)
            # ->
            # i > min
1324 1325 1326 1327 1328 1329 1330 1331
            return gast.Compare(left=gast.Name(
                id=self.iter_var_name
                if self.is_for_range_iter() else self.iter_idx_name,
                ctx=gast.Load(),
                annotation=None,
                type_comment=None),
                                ops=[gast.Gt()],
                                comparators=[compare_node])
1332 1333 1334 1335 1336
        else:
            # eg:
            # range(min, max, 2)
            # ->
            # i < max
1337
            return gast.Compare(left=gast.Name(
1338 1339
                id=self.iter_var_name
                if self.is_for_range_iter() else self.iter_idx_name,
1340
                ctx=gast.Load(),
1341 1342
                annotation=None,
                type_comment=None),
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
                                ops=[gast.Lt()],
                                comparators=[compare_node])

    def _build_index_increase_node(self, step_node):
        return gast.AugAssign(target=gast.Name(
            id=self.iter_var_name
            if self.is_for_range_iter() else self.iter_idx_name,
            ctx=gast.Store(),
            annotation=None,
            type_comment=None),
                              op=gast.Add(),
                              value=step_node)
1355

1356
    def _build_assign_var_slice_node(self):
1357 1358 1359
        var_slice_str = "{}[{}]".format(
            ast_to_source_code(self.iter_node).strip(), self.iter_idx_name)
        var_slice_node = gast.parse(var_slice_str).body[0].value
1360 1361 1362 1363
        new_iter_var_name = unique_name.generate(FOR_ITER_VAR_NAME_PREFIX)
        target_node, assign_node = create_assign_node(new_iter_var_name,
                                                      var_slice_node)
        return target_node, assign_node
1364 1365

    def _build_enum_increase_node(self):
1366 1367 1368 1369 1370 1371
        return gast.AugAssign(target=gast.Name(id=self.enum_idx_name,
                                               ctx=gast.Store(),
                                               annotation=None,
                                               type_comment=None),
                              op=gast.Add(),
                              value=gast.Constant(value=1, kind=None))
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

    def _get_iter_var_name(self):
        if self.is_for_range_iter():
            return self.target.id
        elif self.is_for_iter():
            return self.target.id
        elif self.is_for_enumerate_iter():
            return self.target.elts[1].id
        return None

    def _get_iter_node(self):
        if self.is_for_iter():
            return self.iter_args
        elif self.is_for_enumerate_iter():
            return self.iter_args[0]
        return None

    def _get_enum_idx_name(self):
        if self.is_for_enumerate_iter():
            return self.target.elts[0].id
        return None
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474


class SplitAssignTransformer(gast.NodeTransformer):
    """
    This class transforms sequence assignments and multi-target assignments to normal assignments.
    """

    def __init__(self, ast_node):
        assert isinstance(ast_node, gast.AST)
        self.ast_root = ast_node

    def transform(self):
        self.visit(self.ast_root)

    def visit_Assign(self, node):
        target_nodes = node.targets
        if len(target_nodes) == 1:
            node = self._parse_sequence_assign(node)
        else:
            node = self._parse_multi_target_assign(node)
        return node

    def _parse_sequence_assign(self, node):
        """
        a, b = c, d
        ->
        a = c
        b = d
        """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        if not isinstance(target_nodes[0], (gast.List, gast.Tuple)):
            return node
        if not isinstance(value_node, (gast.List, gast.Tuple)):
            return node

        targets = node.targets[0].elts
        values = node.value.elts
        if len(targets) != len(values):
            return node

        new_nodes = []
        for target, value in zip(targets, values):
            assign_node = gast.Assign(targets=[target], value=value)
            new_nodes.append(assign_node)

        return new_nodes

    def _parse_multi_target_assign(self, node):
        """
         Example 1:
         a = b = c
         ->
         b = c
         a = b

         Example 2:
         a, b = c, d = x
         ->
         c,d = x
         a = c
         b = d
         """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        new_nodes = []
        for target in reversed(target_nodes):
            assign_node = gast.Assign(targets=[target], value=value_node)
            # NOTE: Because assign_node can be sequence assign statement like `a,b = c,d`,
            # it's necessary to visit this new assign_node
            parsed_node = self.visit_Assign(assign_node)
            if not isinstance(parsed_node, list):
                parsed_node = [parsed_node]

            new_nodes.extend(parsed_node)
            value_node = target

        return new_nodes
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490


# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
    while (_is_wrapped(unwrapped_f)):
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
1491 1492


C
Chen Weihang 已提交
1493
def input_specs_compatible(src_input_specs, desired_input_specs):
1494 1495 1496 1497
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
1498 1499 1500 1501
        src_input_spec (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
        desired_input_specs (list or tuple[InputSpec et.al]): list/tuple of
            paddle.static.InputSpec or int/str et.al
1502 1503
    """
    len_specs = len(src_input_specs)
C
Chen Weihang 已提交
1504 1505
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
1506
        # input_spec of to_static, also compatible
C
Chen Weihang 已提交
1507 1508 1509 1510
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
1511 1512 1513 1514 1515 1516 1517 1518
        for (src_spec, desired_spec) in zip(src_input_specs,
                                            desired_input_specs):
            if isinstance(src_spec, paddle.static.InputSpec) or isinstance(
                    desired_spec, paddle.static.InputSpec):
                if not _compatible_tensor_spec(src_spec, desired_spec):
                    return False
            else:
                if not _compatible_non_tensor_spec(src_spec, desired_spec):
C
Chen Weihang 已提交
1519 1520
                    return False

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    return True


def _compatible_tensor_spec(src_spec, desired_spec):
    """
    Check whether two tensor type spec is compatible.
    """
    for spec in [src_spec, desired_spec]:
        if not isinstance(spec, paddle.static.InputSpec):
            return False
    src_shape = src_spec.shape
    other_shape = desired_spec.shape
    len_shape = len(src_shape)
    if len_shape != len(other_shape):
        return False
    for j in range(len_shape):
        if src_shape[j] is None or src_shape[j] < 0:
            continue
        if other_shape[j] is None or other_shape[j] < 0:
            continue
        if src_shape[j] != other_shape[j]:
            return False

    src_dtype = convert_dtype(src_spec.dtype)
    other_dtype = convert_dtype(desired_spec.dtype)
    if src_dtype != other_dtype:
        return False
1548 1549

    return True
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

def _compatible_non_tensor_spec(src_spec, desired_spec):
    """
    Check whether two non-tensor type spec is compatible.
    """

    def hash_value(spec):
        try:
            hash_val = make_hashable(spec)
        except:
            hash_val = None
        return hash_val

    src_hash_val = hash_value(src_spec)
    desired_hash_val = hash_value(desired_spec)

    if src_hash_val != desired_hash_val:
        return False
    else:
        return True

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

def slice_is_num(slice_node):
    # A slice_node.slice can be a:
    # (1) ast.Index, which is a simple number such as [1], [-2]
    # (2) ast.Slice, which is represented by bounds such as [2:-1]
    # (3) ast.Tuple, which includes the above two cases such as [2:-1, 1]
    # If slice node is case (1), return True, Otherwise, return False.
    #
    # NOTE: In (1) case, when gast>=0.4.0, gast.Index is not used, which is replaced
    # other gast node such as gast.Constant, gast.Name, gast.UnaryOp and so on.
    # Considering the compatibility of gast, here use ast note to check whether the
    # node is a num. For more details, please visit https://github.com/serge-sans-paille/gast

    assert isinstance(slice_node, gast.Subscript)
    slice_node_str = ast_to_source_code(slice_node).strip()
    ast_node = ast.parse(slice_node_str).body[0].value

    if isinstance(ast_node.slice, (ast.Tuple, ast.Slice)):
        return False

    if isinstance(ast_node.slice, ast.Index):
        return True

    return False
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624


def create_get_args_node(names):
    """
    Create get_args function as follows:

        def get_args_0():
            nonlocal x, y
            return x, y
    """

    def empty_node():
        func_def = """
        def {func_name}():
            return
        """.format(func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX))
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
    if not names:
        return empty_node()

    mapped = list(filter(lambda n: '.' not in n, names))
    nonlocal_names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
    template = """
    def {func_name}():
        nonlocal {nonlocal_vars}
1625
        return {vars},
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
    """
    func_def = template.format(
        func_name=unique_name.generate(GET_ARGS_FUNC_PREFIX),
        nonlocal_vars=','.join(nonlocal_names),
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_set_args_node(names):
    """
    Create set_args function as follows:

        def set_args_0(__args):
            nonlocal x, y
            x, y = __args
    """

    def empty_node():
        func_def = """
        def {func_name}({args}):
            pass
        """.format(func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
                   args=ARGS_NAME)
        return gast.parse(textwrap.dedent(func_def)).body[0]

    assert isinstance(names, (list, tuple))
    if not names:
        return empty_node()

    mapped = list(filter(lambda n: '.' not in n, names))
    nonlocal_names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
    template = """
    def {func_name}({args}):
        nonlocal {nonlocal_vars}
1662
        {vars}, = {args}
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
    """
    func_def = template.format(
        func_name=unique_name.generate(SET_ARGS_FUNC_PREFIX),
        args=ARGS_NAME,
        nonlocal_vars=','.join(nonlocal_names),
        vars=",".join(names))
    return gast.parse(textwrap.dedent(func_def)).body[0]


def create_nonlocal_stmt_node(names):
    assert isinstance(names, (list, tuple))

    mapped = list(filter(lambda n: '.' not in n, names))
    names = sorted(
        mapped,
        key=mapped.index)  # to keep the order, we can't use set() to unique
    func_code = "nonlocal {}".format(','.join(names))
    return gast.parse(func_code).body[0]