test_KmaxSeqScore.cpp 4.6 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
16
#include <algorithm>
C
caoying03 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <string>
#include <vector>
#include "ModelConfig.pb.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"

#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

DECLARE_bool(use_gpu);
DECLARE_int32(gpu_id);
DECLARE_bool(thread_local_rand_use_global_seed);

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
vector<int> randSampling(int range, int n) {
  srand(1);
  CHECK_GE(range, n);
  vector<int> num(range);
  iota(begin(num), end(num), 0);
  if (range == n) return num;

  random_shuffle(begin(num), end(num));
  num.resize(n);
  return num;
}

void genRandomSeqInfo(vector<int>& seqStartPosition,
                      vector<int>& subSeqStartPosition) {
  const int maxSeqNum = 5;
  // generate random start position information
  int seqNum = 1 + (rand() % maxSeqNum);
  seqStartPosition.resize(seqNum + 1, 0);
  subSeqStartPosition.resize(1, 0);

  for (int i = 0; i < seqNum; ++i) {
    int subSeqLen = 1 + (rand() % maxSeqNum);
    for (int j = 0; j < subSeqLen; ++j)
      subSeqStartPosition.push_back(subSeqStartPosition.back() + subSeqLen);
    seqStartPosition[i + 1] = subSeqStartPosition.back();
  }
}

void genRandomGroundTruth(real* values,
                          vector<vector<int>>& groundTruth,
                          vector<int>& seqStartPosition,
                          vector<int>& subSeqStartPosition,
                          bool useSubseqInfo,
                          size_t beamSize) {
  auto genData = [&](real* values, vector<int>& startPos, size_t beamSize) {
    groundTruth.resize(startPos.size() - 1, vector<int>(beamSize, -1));

    for (size_t i = 0; i < startPos.size() - 1; ++i) {
      int seqLen = startPos[i + 1] - startPos[i];
      vector<int> pos =
          randSampling(seqLen, min(static_cast<int>(beamSize), seqLen));
      for (size_t j = 0; j < pos.size(); ++j) {
        groundTruth[i][j] = pos[j];
        values[subSeqStartPosition[i] + pos[j]] = 1.;
      }
    }
  };

  if (useSubseqInfo)
    genData(values, subSeqStartPosition, beamSize);
  else
    genData(values, seqStartPosition, beamSize);
}

C
caoying03 已提交
88 89
// Test that the batchNormLayer can be followed by a ConvLayer
TEST(Layer, kmaxSeqScoreLayer) {
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  const size_t beamSize = 5;

  vector<int> seqStartPosition;
  vector<int> subSeqStartPosition;
  genRandomSeqInfo(seqStartPosition, subSeqStartPosition);
  MatrixPtr inValue =
      Matrix::create(subSeqStartPosition.back(), 1, false, false);
  inValue->randomizeUniform();

  for (auto hasSubseq : {false, true}) {
    vector<vector<int>> groundTruth;
    genRandomGroundTruth(inValue->getData(),
                         groundTruth,
                         seqStartPosition,
                         subSeqStartPosition,
                         hasSubseq,
                         beamSize);

    for (auto useGpu : {false, true}) {
C
caoying03 已提交
109 110
      TestConfig config;
      config.layerConfig.set_type("kmax_seq_score");
111
      config.layerConfig.set_beam_size(beamSize);
C
caoying03 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
      config.inputDefs.push_back(
          {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
           "layer_0",
           1,
           0});
      config.layerConfig.add_inputs();

      // data layer initialize
      std::vector<DataLayerPtr> dataLayers;
      LayerMap layerMap;
      vector<Argument> datas;
      initDataLayer(config,
                    &dataLayers,
                    &datas,
                    &layerMap,
                    "kmax_seq_score",
                    100,
                    false,
                    useGpu);
      // test layer initialize
      std::vector<ParameterPtr> parameters;
      LayerPtr kmaxSeqScoreLayer;
      initTestLayer(config, &layerMap, &parameters, &kmaxSeqScoreLayer);
      kmaxSeqScoreLayer->forward(PASS_TRAIN);
    }
  }
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  return RUN_ALL_TESTS();
}