int_array.cc 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/common/int_array.h"

17
#include "paddle/phi/backends/context_pool.h"
E
engineer1109 已提交
18
#include "paddle/phi/backends/cpu/cpu_context.h"
19
#include "paddle/phi/common/place.h"
H
Huang Jiyi 已提交
20
#include "paddle/phi/core/ddim.h"
E
engineer1109 已提交
21
#include "paddle/phi/core/tensor_utils.h"
22 23 24 25

namespace paddle {
namespace experimental {

H
Huang Jiyi 已提交
26 27 28 29 30
template <typename T>
IntArrayBase<T>::IntArrayBase(const phi::DDim& dims) {
  AssignData(dims.Get(), dims.size());
}

31 32 33 34 35 36 37 38
template <>
IntArrayBase<phi::DenseTensor>::IntArrayBase(
    const phi::DenseTensor& tensor) {  // NOLINT
  is_from_tensor_ = true;
  if (tensor.place().GetType() == AllocationType::CPU) {
    AssignDataFromTensor(tensor);
  } else {
    phi::DenseTensor tensor_tmp;
E
engineer1109 已提交
39 40 41
    phi::DeviceContextPool& pool = phi::DeviceContextPool::Instance();
    auto dev_ctx = pool.Get(tensor.place());
    phi::Copy(*dev_ctx, tensor, CPUPlace(), true, &tensor_tmp);
42 43 44 45
    AssignDataFromTensor(tensor_tmp);
  }
}

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
template <>
IntArrayBase<phi::DenseTensor>::IntArrayBase(
    const std::vector<phi::TensorRef>& tensor_ref_list) {
  is_from_tensor_ = true;
  for (size_t i = 0; i < tensor_ref_list.size(); ++i) {
    DataType data_type = tensor_ref_list[i].Get()->dtype();
    switch (data_type) {
      case DataType::INT32:
        if (tensor_ref_list[i].Get()->place().GetType() ==
            AllocationType::CPU) {
          array_.push_back(*tensor_ref_list[i].Get()->template data<int32_t>());
        } else {
          phi::DenseTensor tensor_tmp;
          phi::DeviceContextPool& pool = phi::DeviceContextPool::Instance();
          auto dev_ctx = pool.Get(tensor_ref_list[i].Get()->place());
          phi::Copy(*dev_ctx,
                    *(tensor_ref_list[i].Get()),
                    CPUPlace(),
                    true,
                    &tensor_tmp);
          array_.push_back(*tensor_tmp.template data<int32_t>());
        }
        break;
      case DataType::INT64:
        if (tensor_ref_list[i].Get()->place().GetType() ==
            AllocationType::CPU) {
          array_.push_back(*tensor_ref_list[i].Get()->template data<int64_t>());
        } else {
          phi::DenseTensor tensor_tmp;
          phi::DeviceContextPool& pool = phi::DeviceContextPool::Instance();
          auto dev_ctx = pool.Get(tensor_ref_list[i].Get()->place());
          phi::Copy(*dev_ctx,
                    *(tensor_ref_list[i].Get()),
                    CPUPlace(),
                    true,
                    &tensor_tmp);
          array_.push_back(*tensor_tmp.template data<int64_t>());
        }
        break;
      default:
        PD_THROW(
            "Data type error. Currently, The data type of IntArrayBase "
            "only supports Tensor with int32 and int64, "
            "but now received `",
            data_type,
            "`.");
    }
  }
}

96 97 98 99 100 101 102 103 104 105 106 107
template <>
IntArrayBase<phi::DenseTensor>::IntArrayBase(
    const std::vector<phi::DenseTensor>& tensor_list) {
  is_from_tensor_ = true;
  for (size_t i = 0; i < tensor_list.size(); ++i) {
    DataType data_type = tensor_list[i].dtype();
    switch (data_type) {
      case DataType::INT32:
        if (tensor_list[i].place().GetType() == AllocationType::CPU) {
          array_.push_back(*tensor_list[i].template data<int32_t>());
        } else {
          phi::DenseTensor tensor_tmp;
E
engineer1109 已提交
108 109 110
          phi::DeviceContextPool& pool = phi::DeviceContextPool::Instance();
          auto dev_ctx = pool.Get(tensor_list[i].place());
          phi::Copy(*dev_ctx, tensor_list[i], CPUPlace(), true, &tensor_tmp);
111 112 113 114 115 116 117 118
          array_.push_back(*tensor_tmp.template data<int32_t>());
        }
        break;
      case DataType::INT64:
        if (tensor_list[i].place().GetType() == AllocationType::CPU) {
          array_.push_back(*tensor_list[i].template data<int64_t>());
        } else {
          phi::DenseTensor tensor_tmp;
E
engineer1109 已提交
119 120 121
          phi::DeviceContextPool& pool = phi::DeviceContextPool::Instance();
          auto dev_ctx = pool.Get(tensor_list[i].place());
          phi::Copy(*dev_ctx, tensor_list[i], CPUPlace(), true, &tensor_tmp);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
          array_.push_back(*tensor_tmp.template data<int64_t>());
        }
        break;
      default:
        PD_THROW(
            "Data type error. Currently, The data type of IntArrayBase "
            "only supports Tensor with int32 and int64, "
            "but now received `",
            data_type,
            "`.");
    }
  }
}

}  // namespace experimental
}  // namespace paddle