reduce_sig.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/compat/op_utils.h"
16

17
namespace phi {
18 19 20

KernelSignature ReduceSumOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
21 22 23
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "sum_raw" KernelSignature.
24
    // And the InferMeta function(i.e. SumRawInferMeta) is accordance with
25 26 27 28 29 30
    // the "sum_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature("sum_raw",
                             {"X"},
                             {"dim", "keep_dim", "reduce_all", "out_dtype"},
                             {"Out"});
31
    }
32 33
    return KernelSignature(
        "sum", {"X"}, {"dim", "out_dtype", "keep_dim"}, {"Out"});
34 35 36 37 38 39
  }
  return KernelSignature("unregistered", {}, {}, {});
}

KernelSignature ReduceMeanOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
40 41 42
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "mean_raw" KernelSignature.
43
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
44
    // the "mean_raw" KernelSignature
45 46 47
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "mean_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
48
    }
49
    return KernelSignature("mean", {"X"}, {"dim", "keep_dim"}, {"Out"});
50 51 52 53
  }
  return KernelSignature("unregistered", {}, {}, {});
}

54
KernelSignature ReduceProdOpArgumentMapping(const ArgumentMappingContext& ctx) {
55 56 57 58 59 60 61 62 63 64 65 66 67
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "max_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
    // the "max_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "prod_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("prod", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
68 69
}

70 71 72 73 74 75
KernelSignature ReduceMaxOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "max_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
76
    // the "max_raw" KernelSignature
77 78 79 80 81 82 83 84 85
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "max_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("max", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
KernelSignature ReduceMinOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "min_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
    // the "min_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "min_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("min", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

KernelSignature ReduceAnyOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    // When ctx is InferShapeArgumentMappingContext, the reduce_all is used in
    // InferShape, so we must return the "any_raw" KernelSignature.
    // And the InferMeta function(i.e. ReduceInferMetaBase) is accordance with
    // the "any_raw" KernelSignature
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "any_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("any", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

KernelSignature ReduceAllOpArgumentMapping(const ArgumentMappingContext& ctx) {
  if (ctx.IsDenseTensorInput("X")) {
    bool reduce_all = paddle::any_cast<bool>(ctx.Attr("reduce_all"));
    if (ctx.IsForInferShape() || reduce_all) {
      return KernelSignature(
          "all_raw", {"X"}, {"dim", "keep_dim", "reduce_all"}, {"Out"});
    }
    return KernelSignature("all", {"X"}, {"dim", "keep_dim"}, {"Out"});
  }
  return KernelSignature("unregistered", {}, {}, {});
}

C
chentianyu03 已提交
130 131 132 133 134 135 136 137 138
KernelSignature ReduceSumGradOpArgumentMapping(
    const ArgumentMappingContext& ctx) {
  return KernelSignature(
      "sum_grad",
      {"X", GradVarName("Out")},
      {"dim", "keep_dim", "reduce_all", "in_dtype", "out_dtype"},
      {GradVarName("X")});
}

139
}  // namespace phi
140

141 142
PD_REGISTER_BASE_KERNEL_NAME(reduce_sum, sum);
PD_REGISTER_BASE_KERNEL_NAME(reduce_mean, mean);
143
PD_REGISTER_BASE_KERNEL_NAME(reduce_max, max);
144
PD_REGISTER_BASE_KERNEL_NAME(reduce_min, min);
145
PD_REGISTER_BASE_KERNEL_NAME(reduce_prod, prod);
146 147 148
PD_REGISTER_BASE_KERNEL_NAME(reduce_all, all);
PD_REGISTER_BASE_KERNEL_NAME(reduce_any, any);

C
chentianyu03 已提交
149
PD_REGISTER_BASE_KERNEL_NAME(reduce_sum_grad, sum_grad);
150

151 152
PD_REGISTER_ARG_MAPPING_FN(reduce_sum, phi::ReduceSumOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_mean, phi::ReduceMeanOpArgumentMapping);
153
PD_REGISTER_ARG_MAPPING_FN(reduce_prod, phi::ReduceProdOpArgumentMapping);
154
PD_REGISTER_ARG_MAPPING_FN(reduce_max, phi::ReduceMaxOpArgumentMapping);
155 156 157 158
PD_REGISTER_ARG_MAPPING_FN(reduce_min, phi::ReduceMinOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_all, phi::ReduceAllOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(reduce_any, phi::ReduceAnyOpArgumentMapping);

C
chentianyu03 已提交
159 160
PD_REGISTER_ARG_MAPPING_FN(reduce_sum_grad,
                           phi::ReduceSumGradOpArgumentMapping);