reduce_kernel.cu 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/reduce_kernel.h"

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/gpu/reduce.h"

namespace phi {

template <typename T, typename Context>
void MeanRawKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const std::vector<int64_t>& dims,
                   bool keep_dim,
                   bool reduce_all,
                   DenseTensor* out) {
  auto out_dtype = x.dtype();
  phi::Reduce<T, kps::AddFunctor, kps::DivideFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

template <typename T, typename Context>
void SumRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DataType out_dtype,
                  DenseTensor* out) {
  phi::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

template <typename T, typename Context>
void ProdRawKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const std::vector<int64_t>& dims,
                   bool keep_dim,
                   bool reduce_all,
                   DenseTensor* out) {
  auto out_dtype = x.dtype();
  phi::Reduce<T, kps::MulFunctor, kps::IdentityFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

template <typename T, typename Context>
void MaxRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DenseTensor* out) {
  auto out_dtype = x.dtype();
  phi::Reduce<T, kps::MaxFunctor, kps::IdentityFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

template <typename T, typename Context>
void MinRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DenseTensor* out) {
  auto out_dtype = x.dtype();
  phi::Reduce<T, kps::MinFunctor, kps::IdentityFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

template <typename T, typename Context>
void AllRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DenseTensor* out) {
  auto out_dtype = x.dtype();
  phi::Reduce<T, kps::LogicalAndFunctor, kps::IdentityFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

template <typename T, typename Context>
void AnyRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const std::vector<int64_t>& dims,
                  bool keep_dim,
                  bool reduce_all,
                  DenseTensor* out) {
  auto out_dtype = x.dtype();
  phi::Reduce<T, kps::LogicalOrFunctor, kps::IdentityFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

}  // namespace phi

using float16 = phi::dtype::float16;
using bfloat16 = phi::dtype::bfloat16;
using complex64 = ::phi::dtype::complex<float>;
using complex128 = ::phi::dtype::complex<double>;

PD_REGISTER_KERNEL(sum_raw,
                   GPU,
                   ALL_LAYOUT,
                   phi::SumRawKernel,
                   bool,
                   float,
                   double,
                   float16,
                   bfloat16,
                   int16_t,
                   int,
                   int64_t,
                   complex64,
                   complex128) {
  kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}

PD_REGISTER_KERNEL(mean_raw,
                   GPU,
                   ALL_LAYOUT,
                   phi::MeanRawKernel,
                   float,
                   double,
                   bool,
                   float16,
                   int,
                   int64_t) {}

PD_REGISTER_KERNEL(prod_raw,
                   GPU,
                   ALL_LAYOUT,
                   phi::ProdRawKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

PD_REGISTER_KERNEL(
    max_raw, GPU, ALL_LAYOUT, phi::MaxRawKernel, float, double, int, int64_t) {}

PD_REGISTER_KERNEL(
    min_raw, GPU, ALL_LAYOUT, phi::MinRawKernel, float, double, int, int64_t) {}

PD_REGISTER_KERNEL(all_raw, GPU, ALL_LAYOUT, phi::AllRawKernel, bool) {}

PD_REGISTER_KERNEL(any_raw, GPU, ALL_LAYOUT, phi::AnyRawKernel, bool) {}