dist_api_gen.py 28.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse

import yaml
from api_base import PREFIX_TENSOR_NAME
from api_gen import (
    ForwardAPI,
    api_namespace,
    declare_extension_api,
    header_include,
    source_include,
)

######################
# Code Gen Templates #
######################

API_IMPL_TEMPLATE = """
PADDLE_API {} {}({}) {{
  // Kernel Key Construction{}
  // Kernel Dispatch Body{}
}}
"""
DIPATCH_END_GUARD_TEMPLATE = """
PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({}) for input tensors is unimplemented, please check the type of input tensors."));
"""

# TODO(chenweihang): add profile function code later
# TODO(chenweihang): add view support later
MAIN_DIST_BRANCH_TEMPLATE = """
  // Auto Parallel condition
  if ({}) {{
    // 1. Create API Output & Prepare Dist and Dense Output{}
    // 2. InferSPMD (Infer Global Shape and DistAttr of Inputs&Outputs){}
    // 3. Select Kernel{}
    // 4. Reshard Input{}
    // 5. PrepareData (DataTransform & Prepare Dist and Dense Input){}
    // 6. Infer Local DenseTensor Meta{}
    // 7. DenseTensor Kernel Call{}
    // 8. Reshard Output{}
    // 9. Return
    {}
  }}
"""

# Auto Parallel condition
AUTO_PARALLEL_COND_TEMPLATE = """AllInputsAreDistTensor({})"""

# 1. Create API Outputs
API_OUT_CREATION_TEMPLATE = """
    {} api_output{};
"""
INPLACE_API_OUT_CREATION_TEMPLATE = """
    {} api_output{{{}}};
"""
SINGLE_OUT_CREATION_TEMPLATE = """
    auto dist_out = SetKernelDistOutput(&api_output);
72
    auto dense_out = const_cast<phi::DenseTensor*>(&dist_out->value());
73 74 75
"""
MULTI_SINGLE_OUT_CREATION_TEMPLATE = """
    auto dist_out_{} = SetKernelDistOutput({});
76
    auto dense_out_{} = const_cast<phi::DenseTensor*>(&dist_out_{}->value());
77 78 79 80 81 82 83
"""

# TODO(chenweihang): support vector and tuple output later
VECTOR_OUT_CREATION_TEMPLATE = """
"""
MULTI_VECTOR_OUT_CREATION_TEMPLATE = """
    auto dist_out_{} = {}({}, {});
84
    auto dense_out_{} = const_cast<phi::DenseTensor*>(&dist_out_{}->value());
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
"""
TUPLE_OUT_CREATION_TEMPLATE = """
"""

# 2. InferSPMD
# Call InferMeta now, replace by InferSPMD function later
# TODO(chenweihang): InferSPMD function design
SINGLE_DIST_META_IN_TEMPLATE = """MakeMetaTensor(*{}.impl()), """
# TODO(chenweihang): support vector and optional args later
VECTOR_DIST_META_IN_TEMPLATE = """
"""
OPTIONAL_DIST_VECTOR_META_IN_TEMPLATE = """
"""
SINGLE_DIST_META_OUT_DECL_TEMPLATE = """
    phi::MetaTensor meta_{}({});"""
INFER_SPMD_TEMPLATE = """
    phi::{}({}{});
"""

# 3. Select Kernel
KERNEL_SELECTION_TEMPLATE = """
    VLOG(6) << "{} API dist branch: kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
    auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
        "{}", {{kernel_backend, kernel_layout, kernel_data_type}});
    const auto& kernel = kernel_result.kernel;
    VLOG(6) << "{} kernel: " << kernel;
    auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
"""

# 4. Reshard Input
INPUT_RESHARD_TEMPLATE = """
"""

# 5. PrepareData
SINGLE_PREPARE_DATA_TEMPLATE = """
    auto dist_input_{} = PrepareDataForDistTensor({}, GetKernelInputArgDef(kernel.InputAt({}), kernel_backend), {}, kernel_result.is_stride_kernel);
121
    auto input_{} = &dist_input_{}->value();
122 123 124
"""
INFER_META_SINGLE_INPUT_TEMPLATE = """
    auto dist_input_{} = {}.impl();
125
    auto input_{} = &(static_cast<phi::distributed::DistTensor*>(dist_input_{}.get())->value());
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
"""
INFER_META_OPTIONAL_INPUT_TEMPLATE = """
    paddle::optional<phi::TensorBase> input_{} = {} ? paddle::optional<phi::TensorBase>(*{}->impl()) : paddle::none;
"""
INFER_META_VECTOR_INPUT_TEMPLATE = """
    auto input_{}_uq_ptr = TensorToDenseTensor({});
    const auto& input_{} = *input_{}_uq_ptr;
"""

# 6. Infer Local DenseTensor Meta
SINGLE_META_IN_TEMPLATE = """MakeMetaTensor(*input_{}), """
# TODO(chenweihang): support vector and optional args later
VECTOR_META_IN_TEMPLATE = """
"""
OPTIONAL_VECTOR_META_IN_TEMPLATE = """
"""
SINGLE_META_OUT_DECL_TEMPLATE = """
    phi::MetaTensor meta_{}({});"""
INFER_META_TEMPLATE = """
    phi::{}({}{});
"""

# 7. DenseTensor Kernel Call
# TODO(chenweihang): support kernel fallback later
SINGLE_OUTPUT_NAME = """dense_out"""
# TODO(chenweihang): support vector and tuple output later
VECTOR_OUTPUT_NAME_TEMPLATE = """
"""
TUPLE_OUTPUT_NAME_TEMPLATE = """
"""
KERNEL_CALL_TEMPLATE = """
    using kernel_signature = {};
    auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
    (*kernel_fn)({}, {});
"""

# 8. Reshard Output
OUTPUT_RESHARD_TEMPLATE = """
"""

# BaseAPI members:
# inputs:
#     names : [], list of input names
#     input_info : {input_name : type}
# attrs:
#     names : [], list of attribute names
#     attr_info : { attr_name : (type, default_values)}
# outputs:
#     names : [], list of output names
#     types : [], list of output types
#     out_size_expr : [], expression for getting size of vector<Tensor>


class DistForwardAPI(ForwardAPI):
    def __init__(self, api_item_yaml):
        super().__init__(api_item_yaml)
        self.init_dist_api_members()

    def init_dist_api_members(self):
        self.gene_dist_input_func = {
            "const Tensor&": {
                "dense": self.generate_dense_input,
            },
            "const paddle::optional<Tensor>&": {
                "dense": self.generate_dense_input,
            },
        }

        self.inplace_flag = False
        self.dist_output_args = []
        self.dense_output_args = []

    def need_to_generate_code_for_inplace_impl(self, i):
        return (
            self.inplace_flag
            and self.inplace_map is not None
            and self.outputs['names'][i] in self.inplace_map
        )

    def need_to_generate_code_for_view_impl(self, i):
        return (
            not self.inplace_flag
            and self.view_map is not None
            and self.outputs['names'][i] in self.view_map
        )

    def is_inplace_output(self, i):
        return self.outputs['names'][i] in self.inplace_map

    def is_inplace_and_optional_output(self, i):
        return (
            self.outputs['names'][i] in self.inplace_map
            and self.inplace_map[self.outputs['names'][i]] in self.optional_vars
        )

    def vector_output_size_assertion_check(self):
        assert (
            self.outputs['out_size_expr'] is not None
        ), f"{self.api}: The out size expr : '{{expr}}' should be set when output has Tensor[]. You can refer 'split' api."

    def generate_if_condition_code(self) -> str:
        input_args = ""
        for input_name in self.inputs['names']:
            input_args = input_args + input_name + ", "
        if len(input_args) > 2:
            input_args = input_args[:-2]
        return AUTO_PARALLEL_COND_TEMPLATE.format(input_args)

    def generate_output_creation_code(self) -> str:
        # forward api need to generate api and kernel outputs
        output_num = len(self.outputs['types'])
        return_type = self.get_return_type_with_intermediate(self.inplace_flag)
        output_creation_code = ""
        if output_num == 1:
            # api output generate
            if self.need_to_generate_code_for_inplace_impl(0):
                inplace_assign_code = (
                    " = " + self.inplace_map[self.outputs['names'][0]]
                )
                output_creation_code += API_OUT_CREATION_TEMPLATE.format(
                    return_type, inplace_assign_code
                )
            else:
                output_creation_code += API_OUT_CREATION_TEMPLATE.format(
                    return_type, ""
                )
            # kernel output generate
            self.dist_output_args.append('dist_out')
            self.dense_output_args.append('dense_out')
            if self.outputs['types'][0] == 'Tensor':
                output_creation_code += SINGLE_OUT_CREATION_TEMPLATE
            else:
                self.vector_output_size_assertion_check()
        elif output_num > 1:
            # api output generate
            if self.inplace_flag:
                inplace_assign_code = ""
                for i, out_name in enumerate(self.outputs['names']):
                    if self.need_to_generate_code_for_inplace_impl(i):
                        inplace_assign_code += self.inplace_map[out_name] + ', '
                    else:
                        inplace_assign_code += 'Tensor(), '
                inplace_assign_code = inplace_assign_code[:-2]
                output_creation_code += (
                    INPLACE_API_OUT_CREATION_TEMPLATE.format(
                        return_type, inplace_assign_code
                    )
                )
            else:
                output_creation_code += API_OUT_CREATION_TEMPLATE.format(
                    return_type, ""
                )
            # kernel output generate
            for i, out_type in enumerate(self.outputs['types']):
                self.dist_output_args.append(f'dist_out_{i}')
                self.dense_output_args.append(f'dense_out_{i}')
                set_out_func = "SetKernelDistOutput"
                get_out_code = f"&std::get<{i}>(api_output)"
                if self.is_inplace_and_optional_output(i):
                    get_out_code = f"std::get<{i}>(api_output).get_ptr()"

                if out_type == 'std::vector<Tensor>':
                    self.vector_output_size_assertion_check(i)
                    # Special case for inplace vector and inplace optional<vector>
                    # TODO(chenweihang): support this branch later
                    if self.is_inplace_output():
                        set_out_func = "SetInplaceVectorKernelOutput"
                        if self.is_inplace_and_optional_output(i):
                            set_out_func = (
                                "SetInplaceOptionalVectorKernelOutput"
                            )
                            get_out_code = f"std::get<{i}>(api_output)"
                    output_creation_code += (
                        MULTI_VECTOR_OUT_CREATION_TEMPLATE.format(
                            i,
                            set_out_func,
                            self.outputs['out_size_expr'][i],
                            get_out_code,
                            i,
                            i,
                        )
                    )
                else:
                    output_creation_code += (
                        MULTI_SINGLE_OUT_CREATION_TEMPLATE.format(
                            i, get_out_code, i, i
                        )
                    )
        else:
            raise ValueError(
                "{} : Output error: the output should not be empty.".format(
                    self.api
                )
            )

        return output_creation_code

    def generate_infer_spmd_code(self) -> str:
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        output_names = self.outputs['names']

        # 1. get infer meta func name
        infer_meta = self.infer_meta
        infer_meta_func_code = infer_meta['func']

        # 2. get meta tensor input args
        infer_meta_params = (
            infer_meta['param']
            if infer_meta['param'] is not None
            else input_names + attr_names
        )
        input_args_code = ""
        for param in infer_meta_params:
            if param in input_names:
                if self.inputs['input_info'][param] == "const Tensor&":
                    input_args_code += SINGLE_DIST_META_IN_TEMPLATE.format(
                        param
                    )
                else:
                    raise ValueError(
                        f"{self.api} : Param of infer_spmd error : {self.inputs['input_info'][param]} type is not supported."
                    )
            elif param in attr_names:
                input_args_code = input_args_code + param + ", "
            elif isinstance(param, str):
                input_args_code = input_args_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                input_args_code = input_args_code + str(param).lower() + ", "
            else:
                input_args_code = input_args_code + str(param) + ", "

        # 3. get meta tensor output args
        output_decl_code = ""
        output_args_code = ""
        for i, out_name in enumerate(self.dist_output_args):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                # TODO(chenweihang): support vector output later
                pass
            else:
                output_decl_code += SINGLE_DIST_META_OUT_DECL_TEMPLATE.format(
                    out_name, out_name
                )
                if len(self.dense_output_args) == 1:
                    output_args_code += f"&meta_{out_name}, "
                else:
                    output_args_code += (
                        f"{out_name} ? &meta_{out_name} : nullptr, "
                    )
        output_args_code = output_args_code[:-2]

        return output_decl_code + INFER_SPMD_TEMPLATE.format(
            infer_meta_func_code, input_args_code, output_args_code
        )

    def generate_kernel_selection_code(self) -> str:
        return KERNEL_SELECTION_TEMPLATE.format(
            self.api, self.kernel['func'][0], self.kernel['func'][0]
        )

    def generate_reshard_input_code(self) -> str:
        return INPUT_RESHARD_TEMPLATE.format()

    # override BaseAPI's method
    def generate_dense_input(
        self,
        input_name,
    ):
        input_tensor_code = ""
        trans_flag = self.gene_trans_flag(input_name)
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code += SINGLE_PREPARE_DATA_TEMPLATE.format(
            input_name,
            input_name,
            kernel_param.index(input_name),
            trans_flag,
            input_name,
            input_name,
        )

        return input_tensor_code

    def generate_prepare_data_code(self) -> str:
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names
        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
                # onlu support dense tensor
                api_tensor_type = self.inputs['input_info'][input_name]
                phi_tensor_type = 'dense'
                if api_tensor_type in self.gene_dist_input_func.keys():
                    input_tensor_code += self.gene_dist_input_func[
                        api_tensor_type
                    ][phi_tensor_type](input_name)
                else:
                    # do nothing
                    pass
            else:
                if input_name in self.infer_meta['param']:
                    if input_name in self.optional_vars:
                        input_tensor_code += (
                            INFER_META_OPTIONAL_INPUT_TEMPLATE.format(
                                input_name, input_name, input_name, input_name
                            )
                        )
                    else:
                        if (
                            self.inputs['input_info'][input_name]
                            == "const std::vector<Tensor>&"
                        ):
                            input_tensor_code += (
                                INFER_META_VECTOR_INPUT_TEMPLATE.format(
                                    input_name, input_name, input_name
                                )
                            )
                        else:
                            input_tensor_code += (
                                INFER_META_SINGLE_INPUT_TEMPLATE.format(
                                    input_name,
                                    input_name,
                                    input_name,
                                    input_name,
                                )
                            )

        return input_tensor_code

    def generate_infer_meta_code(self) -> str:
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        output_names = self.outputs['names']

        # 1. get infer meta func name
        infer_meta = self.infer_meta
        infer_meta_func_code = infer_meta['func']

        # 2. get meta tensor input args
        infer_meta_params = (
            infer_meta['param']
            if infer_meta['param'] is not None
            else input_names + attr_names
        )
        input_args_code = ""
        for param in infer_meta_params:
            if param in input_names:
                if self.inputs['input_info'][param] == "const Tensor&":
                    input_args_code += SINGLE_META_IN_TEMPLATE.format(param)
                else:
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
            elif param in attr_names:
                input_args_code = input_args_code + param + ", "
            elif isinstance(param, str):
                input_args_code = input_args_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                input_args_code = input_args_code + str(param).lower() + ", "
            else:
                input_args_code = input_args_code + str(param) + ", "

        # 3. get meta tensor output args
        output_decl_code = ""
        output_args_code = ""
        for i, out_name in enumerate(self.dense_output_args):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                # TODO(chenweihang): support vector output later
                pass
            else:
                output_decl_code += SINGLE_META_OUT_DECL_TEMPLATE.format(
                    out_name, out_name
                )
                if len(self.dense_output_args) == 1:
                    output_args_code += f"&meta_{out_name}, "
                else:
                    output_args_code += (
                        f"{out_name} ? &meta_{out_name} : nullptr, "
                    )
        output_args_code = output_args_code[:-2]

        return output_decl_code + INFER_META_TEMPLATE.format(
            infer_meta_func_code, input_args_code, output_args_code
        )

    def generate_kernel_call_code(self) -> str:
        dense_input_trans_map = {
            'const Tensor&': 'const phi::DenseTensor&',
            'const std::vector<Tensor>&': 'const std::vector<const phi::DenseTensor*>&',
            'const paddle::optional<Tensor&>': 'paddle::optional<const phi::DenseTensor&>',
            'const paddle::optional<Tensor>&': 'const paddle::optional<phi::DenseTensor>&',
            'const paddle::optional<std::vector<Tensor>>&': 'const paddle::optional<std::vector<const phi::DenseTensor*>>&',
        }
        dense_output_trans_map = {
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>',
        }

        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const phi::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_args = self.kernel['param']
        if kernel_args is None:
            kernel_args = input_names + attr_names

        # 1. generate input args list
        input_args = ["*dev_ctx"]
        for arg in kernel_args:
            if arg in input_names:
                if arg in self.optional_vars:
                    input_args.append(PREFIX_TENSOR_NAME + arg)
                else:
                    if input_infos[arg] == "const Tensor&":
                        input_args.append("*" + PREFIX_TENSOR_NAME + arg)
                    elif input_infos[arg] == "const std::vector<Tensor>&":
                        input_args.append(PREFIX_TENSOR_NAME + arg)
                    else:
                        # do nothing
                        pass
                kernel_args_type_list.append(
                    dense_input_trans_map[input_infos[arg]]
                )
            elif arg in attr_names:
                if 'IntArray' in self.attrs['attr_info'][arg][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    arg = 'phi::IntArray(' + arg + ')'
                elif 'vector<phi::Scalar>' in self.attrs['attr_info'][arg][0]:
                    kernel_args_type_list.append(
                        'const std::vector<phi::Scalar>&'
                    )
                elif 'Scalar' in self.attrs['attr_info'][arg][0]:
                    kernel_args_type_list.append('const phi::Scalar&')
                    arg = 'phi::Scalar(' + arg + ')'
                else:
                    kernel_args_type_list.append(
                        self.attrs['attr_info'][arg][0]
                    )
                input_args.append(arg)
            elif isinstance(arg, bool):
                input_args.append(str(arg).lower())
            else:
                input_args.append(str(arg))

        # 2. generate output args list
        # record into `self.dense_output_args` in `generate_output_creation_code` function

        # 3. generate kernel signature
        for i, out_type in enumerate(self.outputs['types']):
            kernel_args_type_list.append(dense_output_trans_map[out_type])
        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return KERNEL_CALL_TEMPLATE.format(
            kernel_signature,
            ", ".join(input_args),
            ", ".join(self.dense_output_args),
        )

    def generate_reshard_output_code(self) -> str:
        return OUTPUT_RESHARD_TEMPLATE.format()

    def generate_return_code(self) -> str:
        return self.gene_return_code()

    def generate_auto_paralel_branch(self) -> str:
        # if no tensor input, do not genetate auto parallel branch
        if len(self.inputs['names']) == 0:
            return ""
        return MAIN_DIST_BRANCH_TEMPLATE.format(
            self.generate_if_condition_code(),
            self.generate_output_creation_code(),
            self.generate_infer_spmd_code(),
            self.generate_kernel_selection_code(),
            self.generate_reshard_input_code(),
            self.generate_prepare_data_code(),
            self.generate_infer_meta_code(),
            self.generate_kernel_call_code(),
            self.generate_reshard_output_code(),
            self.generate_return_code(),
        )

    def check_argument_whether_support_auto_parallel(self):
        for name in self.inputs['names']:
            if self.inputs['input_info'][name] != "const Tensor&":
                return False
        for out_type in self.outputs['types']:
            if out_type != "Tensor":
                return False
        return True

    # override BaseAPI's method
    def gene_base_api_code(self, inplace_flag=False):
        # init status
        self.inplace_flag = inplace_flag
        self.dist_output_args = []
        self.dense_output_args = []
        # generate api body
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'

        if len(self.kernel['func']) > 1:
            kernel_dispatch_code = ''
            for kernel_name in self.kernel['func']:
                kernel_dispatch_code += self.gene_dispatch_code(
                    kernel_name, inplace_flag
                )
            return API_IMPL_TEMPLATE.format(
                self.get_return_type(inplace_flag),
                api_func_name,
                self.get_define_args(inplace_flag),
                self.gene_kernel_select(),
                kernel_dispatch_code
                + DIPATCH_END_GUARD_TEMPLATE.format(self.api),
            )
        else:
            # auto parallel branch, all apis contains this branch default
            # 1. only works for the ops contains single kernel
            # 2. doesn't support initialize ops now
            # 3. doesn't support view api
            # 4. only for general forward and backward
            # 5. only support single tensor input and output
            dist_branch_code = ""
            if (
                len(self.inputs['names']) > 0
                and len(self.view_map) == 0
                and self.check_argument_whether_support_auto_parallel()
            ):
                dist_branch_code = self.generate_auto_paralel_branch()

            return API_IMPL_TEMPLATE.format(
                self.get_return_type(inplace_flag),
                api_func_name,
                self.get_define_args(inplace_flag),
                self.gene_kernel_select(),
                dist_branch_code
                + self.gen_kernel_code(
                    self.kernel['func'][0], '', inplace_flag
                ),
            )


def generate_api(
    api_yaml_path, is_fused_ops_yaml, header_file_path, source_file_path
):
    apis = []

    for each_api_yaml in api_yaml_path:
        with open(each_api_yaml, 'r') as f:
            api_list = yaml.load(f, Loader=yaml.FullLoader)
            if api_list:
                apis.extend(api_list)

    header_file = open(header_file_path, 'w')
    source_file = open(source_file_path, 'w')

    namespace = api_namespace()

    header_file.write("#pragma once\n")
    header_file.write(header_include())
    header_file.write(namespace[0])

    include_header_file = (
        "paddle/phi/api/include/fused_api.h"
        if is_fused_ops_yaml is True
        else "paddle/phi/api/include/api.h"
    )
    # not all fused ops supoort dygraph
    if is_fused_ops_yaml is True:
        new_apis = [
            api
            for api in apis
            if "support_dygraph_mode" in api
            and api["support_dygraph_mode"] is True
        ]
        apis = new_apis

    source_file.write(source_include(include_header_file))
    source_file.write(namespace[0])

    for api in apis:
        dist_foward_api = DistForwardAPI(api)
        if dist_foward_api.is_dygraph_api:
            dist_foward_api.is_dygraph_api = False

        header_file.write(dist_foward_api.gene_api_declaration())
        if is_fused_ops_yaml is True:
            source_file.write(dist_foward_api.gene_api_code())
        else:
            source_file.write(dist_foward_api.gene_api_code())

    header_file.write(namespace[1])
    source_file.write(namespace[1])

    source_file.write(declare_extension_api())

    header_file.close()
    source_file.close()


def main():
    parser = argparse.ArgumentParser(
        description='Generate PaddlePaddle C++ API files'
    )
    parser.add_argument(
        '--api_yaml_path',
        help='path to api yaml file',
        nargs='+',
        default=['paddle/phi/api/yaml/ops.yaml'],
    )

    parser.add_argument(
        '--is_fused_ops_yaml',
        help='flag of fused ops yaml',
        action='store_true',
    )

    parser.add_argument(
        '--api_header_path',
        help='output of generated api header code file',
        default='paddle/phi/api/include/api.h',
    )

    parser.add_argument(
        '--api_source_path',
        help='output of generated api source code file',
        default='paddle/phi/api/lib/api.cc',
    )

    options = parser.parse_args()

    api_yaml_path = options.api_yaml_path
    is_fused_ops_yaml = options.is_fused_ops_yaml
    header_file_path = options.api_header_path
    source_file_path = options.api_source_path

    generate_api(
        api_yaml_path, is_fused_ops_yaml, header_file_path, source_file_path
    )


if __name__ == '__main__':
    main()