test_amp_o2_embedding_model.py 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import random
import unittest

import numpy as np
from amp_base_models import AmpTestBase, _build_optimizer

import paddle
from paddle import nn

paddle.enable_static()

_fixed_param = np.random.random(size=[64, 64]).astype("float32")


class SimpleUnittedEmbeddingNet(nn.Layer):
    def __init__(self):
        super().__init__()
        self.vocab_size = 64
        self.hidden_size = 64
        global _fixed_param

        self.param_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Assign(_fixed_param)
        )
        self.embedding = nn.Embedding(
            self.vocab_size, self.hidden_size, weight_attr=self.param_attr
        )
        self.linear = nn.Linear(
            in_features=self.hidden_size,
            out_features=self.vocab_size,
            weight_attr=self.param_attr,
        )

    def forward(self, x):
        out = self.embedding(x)
        scale = paddle.full(shape=[1], fill_value=2, dtype="int64")
        out = paddle.multiply(out, scale.astype("float32"))
        out = self.linear(out)
        out = nn.functional.dropout(out, p=0.2)
        return out


def build_unitted_embedding_model(
    use_amp,
    amp_dtype="float16",
    amp_level="O1",
    use_promote=False,
):
    main_program = paddle.static.Program()
    startup_program = paddle.static.Program()
    with paddle.utils.unique_name.guard():
        with paddle.static.program_guard(main_program, startup_program):
            model = SimpleUnittedEmbeddingNet()
            x = paddle.static.data(name='x', shape=[None, 32], dtype='int64')
            out = model(x)
            loss = paddle.mean(out)
            if use_amp:
                amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
                    custom_white_list=["elementwise_mul"],
                    custom_black_list=["reduce_mean"],
                    dtype=amp_dtype,
                )
            else:
                amp_lists = None
            optimizer = _build_optimizer(
                use_amp,
                amp_dtype,
                amp_level,
                amp_lists,
                True,
                use_promote=use_promote,
            )
            optimizer.minimize(loss)

    feed_vars = [x]
    fetch_vars = [loss]
    return main_program, startup_program, optimizer, feed_vars, fetch_vars


class TestUnittedEmbedding(AmpTestBase):
    def _generate_feed_x(self):
        seed = 0
        paddle.seed(seed)
        np.random.seed(seed)
        random.seed(seed)

        x = np.random.randint(1, 64, size=[1, 32]).astype("int64")
        return x

    def test_compare_o1_and_o2_master_grad(self):
        def _run(place, exe, x_np, max_iters, level):
            (
                main_program,
                startup_program,
                optimizer,
                feed_vars,
                fetch_vars,
            ) = build_unitted_embedding_model(
                True,
                "float16",
                level,
            )

            seed = 0
            paddle.seed(seed)
            np.random.seed(seed)
            random.seed(seed)

            losses = self.run_program(
                main_program,
                startup_program,
                optimizer,
                feed_vars,
                fetch_vars,
                place,
                exe,
                x_np,
                max_iters,
                level,
            )
            return losses

        max_iters = 5
        x = self._generate_feed_x()
        place = paddle.CUDAPlace(0)
        exe = paddle.static.Executor(place)
        losses_o2 = _run(place, exe, x, max_iters, 'O2')


if __name__ == "__main__":
    unittest.main()