parallel_dygraph_gradient_check.py 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import unittest

import paddle
import numpy as np
import paddle.distributed as dist
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Linear

paddle.seed(1024)
np.random.seed(2021)

batch = 5
in_dim = 10
out_dim = 20


class SimpleNet(fluid.Layer):
    def __init__(self, train_id):
        super(SimpleNet, self).__init__()
        self.w1 = self.create_parameter(
            shape=[in_dim, out_dim], dtype="float32")
        self.w2 = self.create_parameter(
            shape=[in_dim, out_dim], dtype="float32")
        self.share_net = Linear(out_dim, 10)

        self.unused_param = self.create_parameter(
            shape=[out_dim, in_dim], dtype="float64")

        # just for test sync_params_buffers
        self.register_buffer("queue", paddle.randn([10, 5]))
        self.queue = paddle.nn.functional.normalize(self.queue, axis=0)
        self.register_buffer("queue_ptr", paddle.zeros([1], 'int64'))

        self.trainer_id = train_id

    def forward(self, x):
        is_use = (paddle.equal_all(
            x, paddle.ones(shape=(batch, in_dim))).numpy()[0] and
                  self.trainer_id == 1)

        if is_use:
            tmp = paddle.matmul(x, self.w1)
        else:
            tmp = paddle.matmul(x, self.w2)

        return self.share_net(tmp)


class TestDistTraning(unittest.TestCase):
    def test_multiple_gpus(self):
        dist.init_parallel_env()
        self.trainer_id = dist.get_rank()

        model_a = SimpleNet(self.trainer_id)
        model_b = SimpleNet(self.trainer_id)

        state_dict = model_a.state_dict()
        model_b.set_state_dict(state_dict)

        model_a = paddle.DataParallel(model_a)
        model_b = paddle.DataParallel(model_b)

        ones_input = paddle.ones(shape=(batch, in_dim))
        ones_input.stop_gradient = True

        w1_grad_sum = np.zeros((in_dim, out_dim), dtype='float32')
        w2_grad_sum = np.zeros((in_dim, out_dim), dtype='float32')

        for step_id in range(5):
            random_input = paddle.rand(shape=(batch, in_dim))
            random_input.stop_gradient = True

            if step_id % 2 == 0:
                out_a = model_a(random_input)
                out_b = model_b(random_input)
            else:
                out_a = model_a(ones_input)
                out_b = model_b(ones_input)

            out_a.sum().backward()
            out_b.sum().backward()

            self.check_gradient(model_a.parameters())
            self.check_gradient(model_b.parameters())

            # test acc gradient
            w1_grad_sum = self.check_acc(model_a._layers.w1.grad, w1_grad_sum,
                                         model_b._layers.w1.grad)
            w2_grad_sum = self.check_acc(model_a._layers.w2.grad, w2_grad_sum,
                                         model_b._layers.w2.grad)

            model_a.clear_gradients()

    def check_acc(self, grad, grad_sum, acc_grad):
        if grad is not None:
            grad_sum = grad_sum + grad
            np.testing.assert_allclose(grad_sum, acc_grad, rtol=1e-6)
        return grad_sum

    def print_trainer_0(self, *args):
        if self.trainer_id == 0:
            print(*args)

    def broadcast_param(self, param, root):
        paddle.distributed.broadcast(param, root)
        return param

    def check_gradient(self, params):
        other_param = []
        for param in params:
            if param.trainable and (param._grad_ivar() is not None):
                grad = param._grad_ivar()
                other_grad = self.broadcast_param(grad.clone(), root=1)
                if self.trainer_id == 0:
                    np.testing.assert_allclose(other_grad.numpy(), grad.numpy())


if __name__ == '__main__':
    unittest.main()