lbfgs.py 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict
from functools import reduce

import paddle

from ..fluid import framework
from .optimizer import Optimizer

__all__ = []


def _cubic_interpolate(x1, f1, g1, x2, f2, g2, bounds=None):
    r"""Cubic interpolation between (x1, f1, g1) and (x2, f2, g2).
        Use two points and their gradient to determine a cubic function and get the minimun point
        between them in the cubic curve.

    Reference:
        Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006.
        pp59: formula 3.59

    Args:
        x1, f1, g1: point1's position, value and gradient.
        x2, f2, g2: point2's position, value and gradient.
        bounds: bounds of interpolation area

    Returns:
        min_pos: the minimun point between the specified points in the cubic curve.
    """
    # Compute bounds of interpolation area
    if bounds is not None:
        xmin_bound, xmax_bound = bounds
    else:
        xmin_bound, xmax_bound = (x1, x2) if x1 <= x2 else (x2, x1)

    d1 = g1 + g2 - 3 * (f1 - f2) / (x1 - x2)
    d2_square = d1**2 - g1 * g2
    if d2_square >= 0:
        d2 = d2_square.sqrt()
        if x1 <= x2:
            min_pos = x2 - (x2 - x1) * ((g2 + d2 - d1) / (g2 - g1 + 2 * d2))
        else:
            min_pos = x1 - (x1 - x2) * ((g1 + d2 - d1) / (g1 - g2 + 2 * d2))
        return min(max(min_pos, xmin_bound), xmax_bound)
    else:
        return (xmin_bound + xmax_bound) / 2.0


def _strong_wolfe(
    obj_func,
    xk,
    alpha,
    d,
    loss,
    grad,
    gtd,
    c1=1e-4,
    c2=0.9,
    tolerance_change=1e-9,
    max_ls=25,
):
    r"""Implements of line search algorithm that satisfies the strong Wolfe conditions using double zoom.

    Reference:
        Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006.
        pp60: Algorithm 3.5 (Line Search Algorithm).

    Args:
        obj_func: the objective function to minimize. ```` accepts a multivariate input and returns a scalar.
        xk (Tensor): the starting point of the iterates.
        alpha (Scalar): the initial step size.
        d (Tensor): search direction.
        loss (scalar): the initial loss
        grad (Tensor): the initial grad
        c1 (Scalar): parameter for sufficient decrease condition.
        c2 (Scalar): parameter for curvature condition.
        tolerance_change (Scalar): terminates if the change of function value/position/parameter between
            two iterations is smaller than this value.
        max_ls(int): max iteration of line search.
        alpha_max (float): max step length.

    Returns:
        loss_new (Scaler): loss of obj_func at final alpha.
        grad_new, (Tensor): derivative of obj_func at final alpha.
        alpha(Tensor): optimal step length, or 0. if the line search algorithm did not converge.
        ls_func_evals (Scaler): number of objective function called in line search process.

    Following summarizes the essentials of the strong Wolfe line search algorithm.
    Some notations used in the description:

        - `func` denotes the objective function.
        - `obi_func` is a function of step size alpha, restricting `obj_func` on a line.

            obi_func = func(xk + alpha * d),
            where xk is the position of k'th iterate, d is the line search direction(decent direction),
            and a is the step size.
        - alpha : substitute of alpha
        - a1 is alpha of last iteration, which is alpha_(i-1).
        - a2 is alpha of current iteration, which is alpha_i.
        - a_lo is alpha in left position when calls zoom, which is alpha_low.
        - a_hi is alpha in right position when calls zoom, which is alpha_high.

    Line Search Algorithm:
        repeat
            Compute obi_func(a2) and derphi(a2).
            1. If obi_func(a2) > obi_func(0) + c_1 * a2 * obi_func'(0) or [obi_func(a2) >= obi_func(a1) and i > 1],
                alpha= zoom(a1, a2) and stop;

            2. If |obi_func'(a2)| <= -c_2 * obi_func'(0),
                alpha= a2 and stop;

            3. If obi_func'(a2) >= 0,
                alpha= zoom(a2, a1) and stop;

            a1 = a2
            a2 = min(2 * a2, a2)
            i = i + 1
        end(repeat)

    zoom(a_lo, a_hi) Algorithm:
        repeat
            aj = cubic_interpolation(a_lo, a_hi)
            Compute obi_func(aj) and derphi(aj).
            1. If obi_func(aj) > obi_func(0) + c_1 * aj * obi_func'(0) or obi_func(aj) >= obi_func(a_lo),
                then a_hi <- aj;
            2.
                2.1. If |obi_func'(aj)| <= -c_2 * obi_func'(0), then alpha= a2 and stop;

                2.2. If obi_func'(aj) * (a2 - a1) >= 0, then a_hi = a_lo

                a_lo = aj;
        end(repeat)
    """

    d_norm = d.abs().max()
    grad = grad.clone()
    # evaluate objective and gradient using initial step
    loss_new, grad_new = obj_func(xk, alpha, d)
    ls_func_evals = 1
    gtd_new = paddle.dot(grad_new, d)

    # bracket an interval containing a point satisfying the Wolfe criteria
    t_prev, f_prev, g_prev, gtd_prev = (
        paddle.to_tensor(0, dtype=grad.dtype),
        loss,
        grad,
        gtd,
    )
    done = False
    ls_iter = 0
    while ls_iter < max_ls:
        # check conditions
        if loss_new > (loss + c1 * alpha * gtd) or (
            ls_iter > 1 and loss_new >= f_prev
        ):
            bracket = [t_prev, alpha]
            bracket_f = [f_prev, loss_new]
            bracket_g = [g_prev, grad_new.clone()]
            bracket_gtd = [gtd_prev, gtd_new]
            break

        if paddle.abs(gtd_new) <= -c2 * gtd:
            bracket = [alpha]
            bracket_f = [loss_new]
            bracket_g = [grad_new]
            done = True
            break

        if gtd_new >= 0:
            bracket = [t_prev, alpha]
            bracket_f = [f_prev, loss_new]
            bracket_g = [g_prev, grad_new.clone()]
            bracket_gtd = [gtd_prev, gtd_new]
            break

        # interpolate
        min_step = alpha + 0.01 * (alpha - t_prev)
        max_step = alpha * 10
        tmp = alpha
        alpha = _cubic_interpolate(
            t_prev,
            f_prev,
            gtd_prev,
            alpha,
            loss_new,
            gtd_new,
            bounds=(min_step, max_step),
        )

        # next step
        t_prev = tmp
        f_prev = loss_new
        g_prev = grad_new.clone()
        gtd_prev = gtd_new

        loss_new, grad_new = obj_func(xk, alpha, d)
        ls_func_evals += 1
        gtd_new = grad_new.dot(d)
        ls_iter += 1

    # reached max number of iterations?
    if ls_iter == max_ls:
        bracket = [0, alpha]
        bracket_f = [loss, loss_new]
        bracket_g = [grad, grad_new]

    # zoom phase: we now have a point satisfying the criteria, or
    # a bracket around it. We refine the bracket until we find the
    # exact point satisfying the criteria
    insuf_progress = False
    # find high and low points in bracket
    low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[-1] else (1, 0)
    while not done and ls_iter < max_ls:
        # line-search bracket is so small
        if paddle.abs(bracket[1] - bracket[0]) * d_norm < tolerance_change:
            break

        # compute new trial value
        alpha = _cubic_interpolate(
            bracket[0],
            bracket_f[0],
            bracket_gtd[0],
            bracket[1],
            bracket_f[1],
            bracket_gtd[1],
        )

        # test that we are making sufficient progress:
        # in case `alpha` is so close to boundary, we mark that we are making
        # insufficient progress, and if
        #   + we have made insufficient progress in the last step, or
        #   + `alpha` is at one of the boundary,
        # we will move `alpha` to a position which is `0.1 * len(bracket)`
        # away from the nearest boundary point.

        eps = 0.1 * (max(bracket) - min(bracket))
        if min(max(bracket) - alpha, alpha - min(bracket)) < eps:
            # interpolation close to boundary
            if insuf_progress or alpha >= max(bracket) or alpha <= min(bracket):
                # evaluate at 0.1 away from boundary
                if paddle.abs(alpha - max(bracket)) < paddle.abs(
                    alpha - min(bracket)
                ):
                    alpha = max(bracket) - eps
                else:
                    alpha = min(bracket) + eps
                insuf_progress = False
            else:
                insuf_progress = True
        else:
            insuf_progress = False
        # Evaluate new point
        loss_new, grad_new = obj_func(xk, alpha, d)
        ls_func_evals += 1
        gtd_new = grad_new.dot(d)
        ls_iter += 1

        if (
            loss_new > (loss + c1 * alpha * gtd)
            or loss_new >= bracket_f[low_pos]
        ):
            # Armijo condition not satisfied or not lower than lowest point
            bracket[high_pos] = alpha
            bracket_f[high_pos] = loss_new
            # bracket_g[high_pos] = grad_new.clone(memory_format=torch.contiguous_format)
            bracket_g[high_pos] = grad_new.clone()
            bracket_gtd[high_pos] = gtd_new
            low_pos, high_pos = (
                (0, 1) if bracket_f[0] <= bracket_f[1] else (1, 0)
            )
        else:
            if paddle.abs(gtd_new) <= -c2 * gtd:
                # Wolfe conditions satisfied
                done = True
            elif gtd_new * (bracket[high_pos] - bracket[low_pos]) >= 0:
                # old high becomes new low
                bracket[high_pos] = bracket[low_pos]
                bracket_f[high_pos] = bracket_f[low_pos]
                bracket_g[high_pos] = bracket_g[low_pos]
                bracket_gtd[high_pos] = bracket_gtd[low_pos]

            # new point becomes new low
            bracket[low_pos] = alpha
            bracket_f[low_pos] = loss_new
            bracket_g[low_pos] = grad_new.clone()
            bracket_gtd[low_pos] = gtd_new

    # return stuff
    alpha = bracket[low_pos]
    loss_new = bracket_f[low_pos]
    grad_new = bracket_g[low_pos]
    return loss_new, grad_new, alpha, ls_func_evals


class LBFGS(Optimizer):
    r"""
    The L-BFGS is a quasi-Newton method for solving an unconstrained optimization problem over a differentiable function.
    Closely related is the Newton method for minimization. Consider the iterate update formula:

    .. math::
        x_{k+1} = x_{k} + H_k \nabla{f_k}

    If :math:`H_k` is the inverse Hessian of :math:`f` at :math:`x_k`, then it's the Newton method.
    If :math:`H_k` is symmetric and positive definite, used as an approximation of the inverse Hessian, then
    it's a quasi-Newton. In practice, the approximated Hessians are obtained
    by only using the gradients, over either whole or part of the search
    history, the former is BFGS, the latter is L-BFGS.

    Reference:
        Jorge Nocedal, Stephen J. Wright, Numerical Optimization, Second Edition, 2006. pp179: Algorithm 7.5 (L-BFGS).

    Args:
        learning_rate (float, optional): learning rate .The default value is 1.
        max_iter (int, optional): maximal number of iterations per optimization step.
            The default value is 20.
        max_eval (int, optional): maximal number of function evaluations per optimization
            step. The default value is max_iter * 1.25.
        tolerance_grad (float, optional): termination tolerance on first order optimality
            The default value is 1e-5.
        tolerance_change (float, optional): termination tolerance on function
            value/parameter changes. The default value is 1e-9.
        history_size (int, optional): update history size. The default value is 100.
        line_search_fn (string, optional): either 'strong_wolfe' or None. The default value is strong_wolfe.
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. The default value is None.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of \
            some derived class of ``GradientClipBase`` . There are three cliping strategies \
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , \
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    Return:
        loss (Tensor): the final loss of closure.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            from paddle.incubate.optimizer import LBFGS

            paddle.disable_static()
            np.random.seed(0)
            np_w = np.random.rand(1).astype(np.float32)
            np_x = np.random.rand(1).astype(np.float32)

            inputs = [np.random.rand(1).astype(np.float32) for i in range(10)]
            # y = 2x
            targets = [2 * x for x in inputs]

            class Net(paddle.nn.Layer):
                def __init__(self):
                    super().__init__()
                    w = paddle.to_tensor(np_w)
                    self.w = paddle.create_parameter(shape=w.shape, dtype=w.dtype, default_initializer=paddle.nn.initializer.Assign(w))

                def forward(self, x):
                    return self.w * x

            net = Net()
            opt = LBFGS(learning_rate=1, max_iter=1, max_eval=None, tolerance_grad=1e-07, tolerance_change=1e-09, history_size=100, line_search_fn='strong_wolfe', parameters=net.parameters())
            def train_step(inputs, targets):
                def closure():
                    outputs = net(inputs)
                    loss = paddle.nn.functional.mse_loss(outputs, targets)
                    print('loss: ', loss.item())
                    opt.clear_grad()
                    loss.backward()
                    return loss
                opt.step(closure)


            for input, target in zip(inputs, targets):
                input = paddle.to_tensor(input)
                target = paddle.to_tensor(target)
                train_step(input, target)

    """

    def __init__(
        self,
        learning_rate=1.0,
        max_iter=20,
        max_eval=None,
        tolerance_grad=1e-7,
        tolerance_change=1e-9,
        history_size=100,
        line_search_fn=None,
        parameters=None,
        weight_decay=None,
        grad_clip=None,
        name=None,
    ):
        if max_eval is None:
            max_eval = max_iter * 5 // 4

        self.learning_rate = learning_rate
        self.max_iter = max_iter
        self.max_eval = max_eval
        self.tolerance_grad = tolerance_grad
        self.tolerance_change = tolerance_change
        self.history_size = history_size
        self.line_search_fn = line_search_fn

        if isinstance(parameters, paddle.Tensor):
            raise TypeError(
                "parameters argument given to the optimizer should be "
                "an iterable of Tensors or dicts, but got " + type(parameters)
            )

        self.state = defaultdict(dict)

        super().__init__(
            learning_rate=1.0,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name,
        )

        if not isinstance(self._parameter_list[0], dict):
            self._params = self._parameter_list
        else:
            for idx, param_group in enumerate(self._param_groups):
                self._params = param_group['params']

        self._numel_cache = None

    def state_dict(self):
        r"""Returns the state of the optimizer as a :class:`dict`.

        Return:
            state, a dict holding current optimization state. Its content
                differs between optimizer classes.
        """

        packed_state = {}
        for k, v in self.state.items():
            packed_state.update({k: v})

        return {'state': packed_state}

    def _numel(self):
        # compute the number of all parameters
        if self._numel_cache is None:
            self._numel_cache = reduce(
                lambda total, p: total + p.numel(), self._params, 0
            )
        return self._numel_cache

    # flatten grad of all parameters
    def _gather_flat_grad(self):
        views = []
        for p in self._params:
            if p.grad is None:
                view = paddle.zeros_like(p).reshape([-1])
            else:
                view = p.grad.reshape([-1])
            views.append(view)
        return paddle.concat(views, axis=0)

    # compute xk = xk + alpha * direction
    def _add_grad(self, alpha, direction):
        offset = 0
        for p in self._params:
            numel = reduce(lambda x, y: x * y, p.shape)
            p = paddle.assign(
                p.add(
                    direction[offset : offset + numel].reshape(p.shape) * alpha
                ),
                p,
            )
            offset += numel
        assert offset == self._numel()

    def _clone_param(self):
        return [p.clone() for p in self._params]

    def _set_param(self, params_data):
        for p, pdata in zip(self._params, params_data):
            paddle.assign(pdata, p)

    def _directional_evaluate(self, closure, x, alpha, d):
        self._add_grad(alpha, d)
        loss = float(closure())
        flat_grad = self._gather_flat_grad()
        self._set_param(x)
        return loss, flat_grad

    @framework.non_static_only
    def step(self, closure):
        """Performs a single optimization step.
        Args:
            closure (callable): A closure that reevaluates the model
                and returns the loss.
        """

        with paddle.no_grad():
            # Make sure the closure is always called with grad enabled
            closure = paddle.enable_grad()(closure)

            learning_rate = self.learning_rate
            max_iter = self.max_iter
            max_eval = self.max_eval
            tolerance_grad = self.tolerance_grad
            tolerance_change = self.tolerance_change
            line_search_fn = self.line_search_fn
            history_size = self.history_size
            state = self.state
            state.setdefault('func_evals', 0)
            state.setdefault('n_iter', 0)

            # evaluate initial f(x) and df/dx
            orig_loss = closure()
            loss = float(orig_loss)

            current_evals = 1
            state['func_evals'] += 1

            flat_grad = self._gather_flat_grad()
            opt_cond = flat_grad.abs().max() <= tolerance_grad

            # optimal condition
            if opt_cond:
                return orig_loss

            # tensors cached in state (for tracing)
            d = state.get('d')
            alpha = state.get('alpha')
            old_yk = state.get('old_yk')
            old_sk = state.get('old_sk')
            ro = state.get('ro')
            H_diag = state.get('H_diag')
            prev_flat_grad = state.get('prev_flat_grad')
            prev_loss = state.get('prev_loss')

            n_iter = 0
            # optimize for a max of max_iter iterations
            while n_iter < max_iter:
                # keep track of nb of iterations
                n_iter += 1
                state['n_iter'] += 1

                ############################################################
                # compute gradient descent direction
                ############################################################
                if state['n_iter'] == 1:
                    d = flat_grad.neg()
                    old_yk = []
                    old_sk = []
                    ro = []
                    H_diag = paddle.to_tensor(1.0, dtype=orig_loss.dtype)
                else:
                    # do lbfgs update (update memory)
                    y = flat_grad.subtract(prev_flat_grad)
                    s = d.multiply(paddle.to_tensor(alpha, dtype=d.dtype))
                    ys = y.dot(s)
                    if ys > 1e-10:
                        # updating memory
                        if len(old_yk) == history_size:
                            # shift history by one (limited-memory)
                            old_yk.pop(0)
                            old_sk.pop(0)
                            ro.pop(0)

                        # store new direction/step
                        old_yk.append(y)
                        old_sk.append(s)
                        ro.append(1.0 / ys)

                        # update scale of initial Hessian approximation
                        H_diag = ys / y.dot(y)  # (y*y)

                    # compute the approximate (L-BFGS) inverse Hessian
                    # multiplied by the gradient
                    num_old = len(old_yk)

                    if 'al' not in state:
                        state['al'] = [None] * history_size
                    al = state['al']

                    # iteration in L-BFGS loop collapsed to use just one buffer
                    q = flat_grad.neg()
                    for i in range(num_old - 1, -1, -1):
                        al[i] = old_sk[i].dot(q) * ro[i]
                        paddle.assign(q.add(old_yk[i] * (-al[i])), q)

                    # multiply by initial Hessian
                    # r/d is the final direction
                    d = r = paddle.multiply(q, H_diag)
                    for i in range(num_old):
                        be_i = old_yk[i].dot(r) * ro[i]
                        paddle.assign(r.add(old_sk[i] * (al[i] - be_i)), r)

                if prev_flat_grad is None:
                    prev_flat_grad = flat_grad.clone()
                else:
                    paddle.assign(flat_grad, prev_flat_grad)
                prev_loss = loss

                ############################################################
                # compute step length
                ############################################################
                # reset initial guess for step size
                if state['n_iter'] == 1:
                    alpha = (
                        min(1.0, 1.0 / flat_grad.abs().sum()) * learning_rate
                    )
                else:
                    alpha = learning_rate

                # directional derivative
                gtd = flat_grad.dot(d)

                # directional derivative is below tolerance
                if gtd > -tolerance_change:
                    break

                # optional line search: user function
                ls_func_evals = 0
                if line_search_fn is not None:
                    # perform line search, using user function
                    if line_search_fn != "strong_wolfe":
                        raise RuntimeError("only 'strong_wolfe' is supported")
                    else:
                        x_init = self._clone_param()

                        def obj_func(x, alpha, d):
                            return self._directional_evaluate(
                                closure, x, alpha, d
                            )

                        loss, flat_grad, alpha, ls_func_evals = _strong_wolfe(
                            obj_func, x_init, alpha, d, loss, flat_grad, gtd
                        )
                    self._add_grad(alpha, d)
                    opt_cond = flat_grad.abs().max() <= tolerance_grad
                else:
                    # no line search, simply move with fixed-step
                    self._add_grad(alpha, d)
                    if n_iter != max_iter:
                        with paddle.enable_grad():
                            loss = float(closure())
                        flat_grad = self._gather_flat_grad()
                        opt_cond = flat_grad.abs().max() <= tolerance_grad
                        ls_func_evals = 1

                # update func eval
                current_evals += ls_func_evals
                state['func_evals'] += ls_func_evals

                # optimal condition
                if opt_cond:
                    break

                # lack of progress
                if (d * alpha).abs().max() <= tolerance_change:
                    break

                if abs(loss - prev_loss) < tolerance_change:
                    break

                # check conditions
                if current_evals >= max_eval:
                    break

                if n_iter == max_iter:
                    break

            state['d'] = d
            state['alpha'] = alpha
            state['old_yk'] = old_yk
            state['old_sk'] = old_sk
            state['ro'] = ro
            state['H_diag'] = H_diag
            state['prev_flat_grad'] = prev_flat_grad
            state['prev_loss'] = prev_loss

        return orig_loss