test_nextafter_op.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#   Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
from eager_op_test import OpTest

import paddle


def ref_nextafter(x, y):
    out = np.nextafter(x, y)
    return out


class TestNextafterAPI(unittest.TestCase):
    def setUp(self):
        self.x = np.random.rand(2, 3, 4, 5).astype('float32')
        self.y = np.random.rand(2, 3, 4, 5).astype('float32')
        self.x1 = np.array([0, 0, 10]).astype("float32")
        self.y1 = np.array([np.inf, -np.inf, 10]).astype("float32")
        self.x2 = np.random.rand(100).astype("float32")
        self.y2 = np.random.rand(100).astype("float32")
        self.place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )

    def test_static_api(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data(
                name='x', shape=self.x.shape, dtype='float32'
            )
            y = paddle.static.data(
                name='y', shape=self.y.shape, dtype='float32'
            )
            out = paddle.nextafter(x, y)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'x': self.x, 'y': self.y}, fetch_list=[out])
        out_ref = ref_nextafter(self.x, self.y)
        np.testing.assert_allclose(out_ref, res[0], rtol=1e-05)

        with paddle.static.program_guard(paddle.static.Program()):
            x1 = paddle.static.data(
                name='x', shape=self.x1.shape, dtype='float32'
            )
            y1 = paddle.static.data(
                name='y', shape=self.y1.shape, dtype='float32'
            )
            out = paddle.nextafter(x1, y1)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'x': self.x1, 'y': self.y1}, fetch_list=[out])
        out_ref = ref_nextafter(self.x1, self.y1)
        np.testing.assert_allclose(out_ref, res[0], rtol=1e-05)

        with paddle.static.program_guard(paddle.static.Program()):
            x2 = paddle.static.data(
                name='x', shape=self.x2.shape, dtype='float32'
            )
            y2 = paddle.static.data(
                name='y', shape=self.y2.shape, dtype='float32'
            )
            out = paddle.nextafter(x2, y2)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'x': self.x2, 'y': self.y2}, fetch_list=[out])
        out_ref = ref_nextafter(self.x2, self.y2)
        np.testing.assert_allclose(out_ref, res[0], rtol=1e-05)

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x)
        y = paddle.to_tensor(self.y)
        out = paddle.nextafter(x, y)
        out_ref = ref_nextafter(self.x, self.y)
        np.testing.assert_allclose(out_ref, out.numpy(), rtol=1e-05)
        paddle.enable_static()


class TestNextafterOP(OpTest):
    def setUp(self):
        self.op_type = "nextafter"
        self.python_api = paddle.nextafter
        self.init_dtype()

        x = np.array([1, 2]).astype(self.dtype)
        y = np.array([2, 1]).astype(self.dtype)
        out = np.nextafter(x, y)
        self.inputs = {'x': x, 'y': y}
        self.outputs = {'out': out}

    def test_check_output(self):
        self.check_output()

    def init_dtype(self):
        self.dtype = np.float64


class TestNextafterOPFP32(TestNextafterOP):
    def init_dtype(self):
        self.dtype = np.float32


if __name__ == "__main__":
    unittest.main()