executor.py 5.3 KB
Newer Older
D
dzhwinter 已提交
1
import numpy as np
Y
Yang Yu 已提交
2 3
import contextlib
from framework import Program, default_main_program
4 5
from . import core

Y
Yang Yu 已提交
6
__all__ = ['Executor', 'global_scope', 'scope_guard', 'switch_scope']
Y
Yu Yang 已提交
7

Y
Yu Yang 已提交
8 9
g_scope = core.Scope()

Y
Yu Yang 已提交
10

Y
Yang Yu 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
def global_scope():
    return g_scope


def switch_scope(scope):
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


@contextlib.contextmanager
def scope_guard(scope):
    ex = switch_scope(scope)
    yield
    switch_scope(ex)


D
dzhwinter 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def as_numpy(tensor):
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
    tensor_data = np.array(tensor)
    if len(lod) == 0:
        ans = tensor_data
    else:
        raise RuntimeError("LoD Calculate lacks unit tests and buggy")
    # elif len(lod) == 1:
    #     ans = []
    #     idx = 0
    #     while idx < len(lod) - 1:
    #         ans.append(tensor_data[lod[idx]:lod[idx + 1]])
    #         idx += 1
    # else:
    #     for l in reversed(lod):
    #         ans = []
    #         idx = 0
    #         while idx < len(l) - 1:
    #             ans.append(tensor_data[l[idx]:l[idx + 1]])
    #             idx += 1
    #         tensor_data = ans
    #     ans = tensor_data
    return ans


Y
Yu Yang 已提交
57 58 59 60 61 62 63 64 65 66 67
class Executor(object):
    def __init__(self, places):
        if not isinstance(places, list) and not isinstance(places, tuple):
            places = [places]

        act_places = []
        for each in places:
            p = core.Place()
            p.set_place(each)
            act_places.append(p)

D
dzhwinter 已提交
68
        # TODO(dzhwinter) : consider that our fluid tests all written in 
D
dzhwinter 已提交
69
        # CUDAPlace(gpu_id), this will be changed in the future
D
dzhwinter 已提交
70 71 72 73 74
        if core.is_compile_gpu():
            core.init_devices(["CPU", "GPU:0"])
        else:
            core.init_devices(["CPU"])

D
dzhwinter 已提交
75 76
        # TODO(dzhwinter) : only use the first place
        self.executor = core.Executor(act_places[0])
D
dzhwinter 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        self.places = places

    def aslodtensor(self, data):
        def accumulate(data):
            if not isinstance(data, list):
                return 1
            return sum([accumulate(sub) for sub in data])

        def parselod(data):
            seq_lens = [accumulate(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
                cur_len += l
                lod.append(cur_len)
            return lod

        assert len(self.places) != 0
        if not isinstance(data, list):
            # pure tensor case
            tensor = core.LoDTensor()
            tensor.set(data, self.places[0])
            return tensor
        else:
            raise RuntimeError("Current implementation lacks unittests")
            # lodtensor case
            lod = []
            if not isinstance(data[0], list):
                lod.append(parselod(data))
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            else:
                while isinstance(data[0], list):
                    lod.append(parselod(seq))
                    flattened_data = [item for seq in data for item in seq]
                    data = flattened_data
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            flattened_data = flattened_data.reshape([len(flattened_data), 1])
            tensor = core.LoDTensor()
            tensor.set(flattened_data, self.places[0])
            tensor.set_lod(lod)
            return tensor
Y
Yu Yang 已提交
118 119

    def run(self,
Y
Yu Yang 已提交
120
            program=None,
121 122
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
123
            feed_var_name='feed',
Y
Yu Yang 已提交
124
            fetch_var_name='fetch',
D
dzhwinter 已提交
125 126
            scope=None,
            return_numpy=True):
127 128 129 130 131
        if feed is None:
            feed = {}
        if fetch_list is None:
            fetch_list = []

Y
Yu Yang 已提交
132
        if program is None:
Y
Yu Yang 已提交
133
            program = default_main_program()
Y
Yu Yang 已提交
134

Y
Yu Yang 已提交
135 136 137
        if not isinstance(program, Program):
            raise TypeError()

Y
Yu Yang 已提交
138
        if scope is None:
Y
Yang Yu 已提交
139
            scope = global_scope()
Y
Yu Yang 已提交
140

Y
Yu Yang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154
        program = program.clone()
        global_block = program.global_block()
        feed_var = global_block.create_var(
            name=feed_var_name,
            type=core.VarDesc.VarType.FEED_MINIBATCH,
            persistable=True)

        for i, name in enumerate(feed):
            out = global_block.var(name)
            global_block.prepend_op(
                'feed',
                inputs={'X': [feed_var]},
                outputs={'Out': [out]},
                attrs={'col': i})
D
dzhwinter 已提交
155 156 157 158
            cur_feed = feed[name]
            if not isinstance(cur_feed, core.LoDTensor):
                cur_feed = self.aslodtensor(cur_feed)
            core.set_feed_variable(scope, cur_feed, feed_var.name, i)
Y
Yu Yang 已提交
159 160 161 162 163 164 165 166 167 168 169 170

        fetch_var = global_block.create_var(
            name=fetch_var_name,
            type=core.VarDesc.VarType.FETCH_LIST,
            persistable=True)
        for i, var in enumerate(fetch_list):
            global_block.append_op(
                type='fetch',
                inputs={'X': [var]},
                outputs={'Out': [fetch_var]},
                attrs={'col': i})

T
typhoonzero 已提交
171
        self.executor.run(program.desc, scope, 0, True, True)
D
dzhwinter 已提交
172
        outs = [
Y
Yu Yang 已提交
173
            core.get_fetch_variable(scope, fetch_var_name, i)
Y
Yu Yang 已提交
174 175
            for i in xrange(len(fetch_list))
        ]
D
dzhwinter 已提交
176 177 178 179

        if return_numpy:
            outs = as_numpy(outs)
        return outs