test_recognize_digits.py 10.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yu 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17
import paddle.fluid.core as core
18
import math
武毅 已提交
19
import os
20 21 22 23 24 25 26 27
import sys
import unittest

import numpy

import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
28

P
pangyoki 已提交
29 30
paddle.enable_static()

Y
Yang Yu 已提交
31 32 33 34 35 36
BATCH_SIZE = 64


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
37
    avg_loss = fluid.layers.mean(loss)
L
Liu Yiqun 已提交
38 39
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
Y
Yang Yu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55


def mlp(img, label):
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
    return loss_net(hidden, label)


def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
Y
Yang Yang(Tony) 已提交
56
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
Y
Yang Yu 已提交
57 58 59 60 61 62 63 64 65 66
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    return loss_net(conv_pool_2, label)


67 68 69 70
def train(nn_type,
          use_cuda,
          parallel,
          save_dirname=None,
X
Xin Pan 已提交
71
          save_full_dirname=None,
72
          model_filename=None,
武毅 已提交
73 74
          params_filename=None,
          is_local=True):
75 76
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yang Yu 已提交
77 78 79
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

80
    if nn_type == 'mlp':
Y
Yang Yu 已提交
81 82 83 84
        net_conf = mlp
    else:
        net_conf = conv_net

85
    if parallel:
X
Xin Pan 已提交
86
        raise NotImplementedError()
Y
Yang Yu 已提交
87
    else:
L
Liu Yiqun 已提交
88
        prediction, avg_loss, acc = net_conf(img, label)
Y
Yang Yu 已提交
89

90
    test_program = fluid.default_main_program().clone(for_test=True)
Y
Yang Yu 已提交
91

X
Xin Pan 已提交
92
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
93
    optimizer.minimize(avg_loss)
Y
Yang Yu 已提交
94

95
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yang Yu 已提交
96 97 98 99 100 101 102

    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
        batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
103 104
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
Y
Yang Yu 已提交
105 106
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)

武毅 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        PASS_NUM = 100
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                # train a mini-batch, fetch nothing
                exe.run(main_program, feed=feeder.feed(data))
                if (batch_id + 1) % 10 == 0:
                    acc_set = []
                    avg_loss_set = []
                    for test_data in test_reader():
                        acc_np, avg_loss_np = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[acc, avg_loss])
                        acc_set.append(float(acc_np))
                        avg_loss_set.append(float(avg_loss_np))
                    # get test acc and loss
                    acc_val = numpy.array(acc_set).mean()
                    avg_loss_val = numpy.array(avg_loss_set).mean()
Q
Qi Li 已提交
128 129
                    if float(acc_val) > 0.2 or pass_id == (PASS_NUM - 1):
                        # Smaller value to increase CI speed
武毅 已提交
130 131 132 133 134 135
                        if save_dirname is not None:
                            fluid.io.save_inference_model(
                                save_dirname, ["img"], [prediction],
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename)
X
Xin Pan 已提交
136 137
                        if save_full_dirname is not None:
                            fluid.io.save_inference_model(
X
Xin Pan 已提交
138
                                save_full_dirname, [], [],
X
Xin Pan 已提交
139 140 141 142
                                exe,
                                model_filename=model_filename,
                                params_filename=params_filename,
                                export_for_deployment=False)
武毅 已提交
143 144
                        return
                    else:
145
                        print(
武毅 已提交
146 147
                            'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
                            format(pass_id, batch_id + 1,
148
                                   float(avg_loss_val), float(acc_val)))
武毅 已提交
149 150 151 152 153 154 155
                        if math.isnan(float(avg_loss_val)):
                            sys.exit("got NaN loss, training failed.")
        raise AssertionError("Loss of recognize digits is too large")

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
156 157
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
158 159 160 161
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
162
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
163
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
164 165
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
166
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
167
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
168 169 170 171 172 173 174 175
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
176 177


178 179 180 181
def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
L
Liu Yiqun 已提交
182 183 184
    if save_dirname is None:
        return

185
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
L
Liu Yiqun 已提交
186 187
    exe = fluid.Executor(place)

188 189 190 191 192 193
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
194 195 196
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)
197 198 199 200 201 202 203 204 205 206 207 208

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.uniform(
            -1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)
209
        print("infer results: ", results[0])
L
Liu Yiqun 已提交
210 211


212
def main(use_cuda, parallel, nn_type, combine):
213
    save_dirname = None
X
Xin Pan 已提交
214
    save_full_dirname = None
215 216
    model_filename = None
    params_filename = None
217 218
    if not use_cuda and not parallel:
        save_dirname = "recognize_digits_" + nn_type + ".inference.model"
X
Xin Pan 已提交
219
        save_full_dirname = "recognize_digits_" + nn_type + ".train.model"
220
        if combine == True:
221 222
            model_filename = "__model_combined__"
            params_filename = "__params_combined__"
223

武毅 已提交
224
    # call train() with is_local argument to run distributed train
225 226 227 228
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        parallel=parallel,
229
        save_dirname=save_dirname,
X
Xin Pan 已提交
230
        save_full_dirname=save_full_dirname,
231 232
        model_filename=model_filename,
        params_filename=params_filename)
233 234 235
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
236 237
        model_filename=model_filename,
        params_filename=params_filename)
238 239 240 241 242 243


class TestRecognizeDigits(unittest.TestCase):
    pass


244
def inject_test_method(use_cuda, parallel, nn_type, combine):
245 246 247 248 249 250
    def __impl__(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
251
                main(use_cuda, parallel, nn_type, combine)
252

253 254 255 256
    fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
                                       if use_cuda else 'cpu', 'parallel'
                                       if parallel else 'normal', 'combine'
                                       if combine else 'separate')
257 258 259 260 261 262

    setattr(TestRecognizeDigits, fn, __impl__)


def inject_all_tests():
    for use_cuda in (False, True):
263 264
        if use_cuda and not core.is_compiled_with_cuda():
            continue
X
fix  
Xin Pan 已提交
265
        for parallel in (False, ):
266
            for nn_type in ('mlp', 'conv'):
267 268
                inject_test_method(use_cuda, parallel, nn_type, True)

269
    # Two unit-test for saving parameters as separate files
270
    inject_test_method(False, False, 'mlp', False)
271
    inject_test_method(False, False, 'conv', False)
272 273 274 275 276 277


inject_all_tests()

if __name__ == '__main__':
    unittest.main()