executor_cache.cc 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/executor_cache.h"
16
#include "paddle/fluid/framework/new_executor/interpretercore.h"
17
#include "paddle/fluid/framework/op_info.h"
18 19
#include "paddle/fluid/ir/transforms/pd_op_to_kernel_pass.h"
#include "paddle/fluid/ir_adaptor/translator/translate.h"
20 21
#include "paddle/ir/core/program.h"
#include "paddle/ir/core/value.h"
22

23 24 25 26 27
namespace paddle {
namespace framework {
class ProgramDesc;
}  // namespace framework
}  // namespace paddle
28 29 30 31 32 33

namespace paddle {
namespace framework {

namespace details {

34
static ExecutionStrategy GetExecutionStrategy(const platform::Place &place) {
35 36
  framework::ExecutionStrategy execution_strategy;

37 38
  auto device_type = platform::Place2DeviceType(place);
  switch (device_type) {
39 40 41 42 43 44 45 46 47 48 49 50
    case platform::DeviceType::CPU: {
      execution_strategy.num_threads_ = 2;
      break;
    }
    case platform::DeviceType::CUDA: {
      // NOTE: According experiments, one thread is faster in
      // most model training.
      execution_strategy.num_threads_ = 1;
      break;
    }
    case platform::DeviceType::XPU: {
      execution_strategy.num_threads_ = 1;
51 52 53 54
      break;
    }
    case platform::DeviceType::IPU: {
      execution_strategy.num_threads_ = 1;
55 56
      break;
    }
57 58 59 60
    case platform::DeviceType::CUSTOM_DEVICE: {
      execution_strategy.num_threads_ = 1;
      break;
    }
61 62
    default:
      PADDLE_THROW(platform::errors::Unavailable("Unsupported Device type %d.",
63
                                                 device_type));
64
  }
65
  execution_strategy.use_device_ = device_type;
66 67 68 69 70 71

  return execution_strategy;
}

void AppendSkipDeletionVars(const std::vector<std::string> &append_vars,
                            std::vector<std::string> *all_vars) {
72 73 74 75 76
  for (auto &var : append_vars) {
    all_vars->emplace_back(var);
  }
}

77 78 79 80 81 82 83 84 85 86 87 88 89
/*
 * NOTE(Aurelius84): In ParallelExecutor, memory optimized pass will be applied.
 * To avoid eagerly deleting last alive variables which are necessary in
 * backward program, we firstly parse these variable names as
 * skip_eager_vars. While executing pe.run skip_eager_vars are used to
 * skip memory optimization.
 *
 * Variables satisfying the following rules are considered as skip_eager_var:
 *
 *   1. it is an output var in run_program_op
 *   2. it is an input var used in backward_op
 */
void ParseSafeEagerDeletionSkipVars(
90 91
    const ProgramDesc &program,
    int64_t forward_op_nums,
92 93 94
    const std::vector<std::string> &output_var_names,
    std::vector<std::string> *skip_eager_delete_vars) {
  auto all_ops = program.Block(0).AllOps();
95
  auto &op_info_map = OpInfoMap::Instance();
96 97 98 99 100 101 102 103 104
  // NOTE: skip `shape` and `fill_constant` op created by
  // fluid.backward.gradients, one forward output will generate one `shape`
  // and `fill_constant`.
  size_t backward_op_start_index =
      forward_op_nums + (output_var_names.size() * 2);

  // step 2: parse the necessary variable of backward op
  std::unordered_set<std::string> op_outputs;
  std::unordered_set<std::string> op_inputs;
105 106
  std::unordered_set<std::string> no_need_buffer_ins;

107 108
  for (auto i = backward_op_start_index; i < all_ops.size(); ++i) {
    framework::OpDesc *op = all_ops[i];
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    // NOTE: skip NoNeedBufferVars of grad_op and GC its memory in advance.
    auto &op_info = op_info_map.Get(op->Type());
    auto &inferer = op_info.NoNeedBufferVarsInferer();
    no_need_buffer_ins.clear();
    if (inferer != nullptr) {
      no_need_buffer_ins =
          inferer(op->Inputs(), op->Outputs(), op->GetAttrMap());
    }
    for (auto &in_names : op->Inputs()) {
      if (no_need_buffer_ins.count(in_names.first) == 0) {
        for (auto &in_name : in_names.second) {
          op_inputs.emplace(in_name);
        }
      } else {
        VLOG(2) << op->Type() << " has no_need_buffer_in: " << in_names.first
                << " , skip it.";
      }
126
    }
127

128
    for (const std::string &out_arg_name : op->OutputArgumentNames()) {
129
      op_outputs.emplace(out_arg_name);
130 131 132 133 134
    }
  }
  // For the grad op input variables, if it is not output of grad_op, it may
  // be output of forward op and we should set the variables as skip_var to
  // prevent it being deleted when grad op is called multiple times.
135 136 137 138
  for (const std::string &var_name : op_inputs) {
    if (op_outputs.find(var_name) == op_outputs.end()) {
      VLOG(2) << "skip eager var: " << var_name;
      skip_eager_delete_vars->emplace_back(var_name);
139 140
    }
  }
141
  VLOG(3) << "Found skip_eager_delete_vars: " << skip_eager_delete_vars->size();
142
}
143

144 145 146 147 148 149 150 151
void AppendSkipDeletionVars(const std::vector<std::string> &append_vars,
                            std::set<std::string> *all_vars) {
  for (auto &var : append_vars) {
    all_vars->insert(var);
  }
}

std::set<std::string> ParseSafeEagerDeletionSkipVarsSet(
152
    const ProgramDesc &backward_program, bool skip_no_need_buffer) {
153 154 155 156 157 158
  std::set<std::string> skip_eager_delete_vars;
  auto backward_ops = backward_program.Block(0).AllOps();
  auto &op_info_map = OpInfoMap::Instance();
  std::unordered_set<std::string> op_outputs;
  std::unordered_set<std::string> op_inputs;
  std::unordered_set<std::string> no_need_buffer_ins;
159
  for (auto op : backward_ops) {
160
    VLOG(4) << "parse op type: " << op->Type();
161 162 163 164 165 166 167 168
    if (op->Type() == "share_buffer") {
      VLOG(1) << "skip share_buffer op";
      continue;
    }
    // NOTE: skip NoNeedBufferVars of grad_op and GC its memory in advance.
    auto &op_info = op_info_map.Get(op->Type());
    auto &inferer = op_info.NoNeedBufferVarsInferer();
    no_need_buffer_ins.clear();
169 170 171
    // TODO(Aurelius84): Need remove skip_no_need_buffer after cinn fix this
    // problem.
    if (inferer != nullptr && !skip_no_need_buffer) {
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
      no_need_buffer_ins =
          inferer(op->Inputs(), op->Outputs(), op->GetAttrMap());
    }
    for (auto &in_names : op->Inputs()) {
      if (no_need_buffer_ins.count(in_names.first) == 0) {
        for (auto &in_name : in_names.second) {
          op_inputs.emplace(in_name);
        }
      } else {
        VLOG(2) << op->Type() << " has no_need_buffer_in: " << in_names.first
                << " , skip it.";
      }
    }
    for (const std::string &out_arg_name : op->OutputArgumentNames()) {
      op_outputs.emplace(out_arg_name);
    }
  }
  for (const std::string &var_name : op_inputs) {
190
    VLOG(4) << "parse op.input: " << var_name;
191 192 193 194 195 196 197 198
    if (op_outputs.find(var_name) == op_outputs.end()) {
      VLOG(1) << "skip eager var: " << var_name;
      skip_eager_delete_vars.insert(var_name);
    }
  }
  VLOG(1) << "Found skip_eager_delete_vars: " << skip_eager_delete_vars.size();
  return skip_eager_delete_vars;
}
199 200 201 202 203 204 205 206 207 208
}  // namespace details

// C++11 removes the need for manual locking. Concurrent execution shall wait if
// a static local variable is already being initialized.
// https://stackoverflow.com/questions/11711920/how-to-implement-multithread-safe-singleton-in-c11-without-using-mutex
ExecutorInfoCache &ExecutorInfoCache::Instance() {
  static ExecutorInfoCache g_exe_cache_info_map;
  return g_exe_cache_info_map;
}

209
static PEAndGraphPair CreateExecutorInfo(
210 211 212 213 214
    const ProgramDesc &program_desc,
    const platform::Place &place,
    int64_t start_op_index,
    int64_t end_op_index,
    framework::Scope *scope,
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    const details::BuildStrategy &build_strategy) {
  auto execution_strategy = details::GetExecutionStrategy(place);
  auto graph = std::make_shared<framework::ir::Graph>(
      program_desc, start_op_index, end_op_index);
  auto parallel_executor = std::make_shared<framework::ParallelExecutor>(
      place, scope, execution_strategy, build_strategy, graph.get());
  parallel_executor->PrepareVariables(scope);
  return std::make_pair(parallel_executor, graph);
}

PEAndGraphPair CreateFixOrderExecutorInfo(const ProgramDesc &program_desc,
                                          const platform::Place &place,
                                          int64_t start_op_index,
                                          int64_t end_op_index,
                                          framework::Scope *scope) {
  details::BuildStrategy build_strategy;
  build_strategy.fix_op_run_order_ = true;
232 233
  auto pe_and_graph = CreateExecutorInfo(
      program_desc, place, start_op_index, end_op_index, scope, build_strategy);
234 235 236
  return pe_and_graph;
}

237 238
CacheInfo GetExecutorInfoFromCache(const ProgramDesc &program_desc,
                                   const platform::Place &place,
239 240 241 242
                                   int64_t start_op_index,
                                   int64_t end_op_index,
                                   bool is_grad,
                                   int64_t program_id,
243
                                   framework::Scope *scope) {
244 245
  auto &cached_exe_info = framework::ExecutorInfoCache::Instance();

246
  if (!cached_exe_info.Has(program_id, is_grad)) {
247 248 249 250 251 252 253
    // TODO(Aurelius84): Consider to use LRU algorithm to replace this.
    if (cached_exe_info.Size() > 4u /* max_cached_size*/) {
      VLOG(2) << "The cached info size has exceeded max_cached_size: 4, clear "
                 "all cache!";
      cached_exe_info.Finalize();
    }

254 255
    VLOG(1) << "create exe_info for " << program_id << " is_grad: " << is_grad;
    auto &build_strategy = cached_exe_info.GetBuildStrategy(program_id);
256

257
    // 2. Construct Graph and ParallelExecutor.
258 259 260 261 262 263
    auto pe_and_graph = CreateExecutorInfo(program_desc,
                                           place,
                                           start_op_index,
                                           end_op_index,
                                           scope,
                                           build_strategy);
264

265 266
    // 3. Insert value into cached map.
    auto &cached_value = cached_exe_info.GetMutable(program_id, is_grad);
267 268 269
    cached_value.executor_ = pe_and_graph.first;
    cached_value.graph_ = pe_and_graph.second;
    return std::make_pair(pe_and_graph.first, /*is_new_created=*/true);
270
  } else {
271 272 273
    VLOG(1) << "get exe_info from cache by: " << program_id
            << " is_grad: " << is_grad;
    auto &cached_value = cached_exe_info.GetMutable(program_id, is_grad);
274

275
    auto &parallel_executor = cached_value.executor_;
276 277 278 279 280 281 282
    // update op_handle scope_map in pe->executor_->Graph
    std::unordered_map<Scope *, Scope *> scope_map = {
        {parallel_executor->GetLocalScopes().front(), scope}};
    parallel_executor->ResetOpHandleScopeMapOfGraphs(scope_map);
    // need to recreate tmp variables in new scope
    parallel_executor->PrepareVariables(scope);

283
    return std::make_pair(parallel_executor, /*is_new_created=*/false);
284 285 286
  }
}

287 288 289 290 291
InterpreterCoreInfoCache &InterpreterCoreInfoCache::Instance() {
  static InterpreterCoreInfoCache g_info_cache;
  return g_info_cache;
}

292
std::shared_ptr<InterpreterCore> CreateProgramInterpreterCoreInfoToCache(
293 294 295 296 297 298 299
    const ProgramDesc &program_desc,
    const platform::Place &place,
    bool is_grad,
    int64_t program_id,
    framework::Scope *scope) {
  auto &interpretercore_info_cache =
      framework::InterpreterCoreInfoCache::Instance();
300
  if (interpretercore_info_cache.Size() > 10u /* max_cached_size*/) {
301 302
    VLOG(2) << "The cached info size has exceeded max_cached_size: 4, clear "
               "all cache!";
303 304
    interpretercore_info_cache.Finalize();
  }
305 306 307
  interpreter::ExecutionConfig execution_config;
  execution_config.create_local_scope = false;
  execution_config.used_for_jit = true;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

  std::shared_ptr<InterpreterCore> core = nullptr;

  core.reset(new InterpreterCore(
      place, program_desc.Block(0), scope, execution_config));

  auto &cached_value =
      interpretercore_info_cache.GetMutable(program_id, is_grad);
  cached_value.core_ = core;
  return core;
}

std::shared_ptr<InterpreterCore> CreateNewIRInterpreterCoreInfoToCache(
    std::unique_ptr<::ir::Program> ir_program,
    const platform::Place &place,
    bool is_grad,
    int64_t program_id,
    framework::Scope *scope) {
  auto &interpretercore_info_cache =
      framework::InterpreterCoreInfoCache::Instance();
  if (interpretercore_info_cache.Size() > 10u /* max_cached_size*/) {
    VLOG(2) << "The cached info size has exceeded max_cached_size: 4, clear "
               "all cache!";
    interpretercore_info_cache.Finalize();
  }
  interpreter::ExecutionConfig execution_config;
  execution_config.create_local_scope = false;
  execution_config.used_for_jit = true;

  std::shared_ptr<InterpreterCore> core = nullptr;

  core.reset(new InterpreterCore(
340
      place, {}, std::move(ir_program), scope, execution_config));
341

342 343 344 345 346 347
  auto &cached_value =
      interpretercore_info_cache.GetMutable(program_id, is_grad);
  cached_value.core_ = core;
  return core;
}

348 349 350 351
std::unique_ptr<::ir::Program> ConstructFowardIrProgram(
    const paddle::framework::BlockDesc *forward_global_block,
    const paddle::framework::BlockDesc *backward_global_block,
    const std::vector<std::string> output_names,
352 353
    const std::vector<paddle::Tensor> &x,
    const std::vector<paddle::Tensor> &params) {
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  auto ir_ctx = ::ir::IrContext::Instance();
  auto program = std::make_unique<::ir::Program>(ir_ctx);

  std::set<std::string> set_output_names;
  auto local_program =
      paddle::framework::ProgramDesc(*(forward_global_block->Program()));

  for (auto op_desc : local_program.Block(0).AllOps()) {
    for (const auto &n : op_desc->Outputs()) {
      const auto &input_var_names = n.second;
      for (const auto &var_name : input_var_names) {
        set_output_names.insert(var_name);
      }
    }
  }

  // add fetch with place op to program
371
  auto *block = local_program.MutableBlock(0);
372 373
  for (auto &in_t : x) {
    auto name = in_t.name();
374 375 376
    if (block->FindVarRecursive(name) == nullptr) {
      continue;
    }
377 378
    auto place = in_t.place().GetType();

379
    auto op_desc = block->PrependOp();
380 381 382 383 384 385 386 387 388
    op_desc->SetType("feed_with_place");
    op_desc->SetAttr("index", 0);
    // TODO(phlrain) : using tensor dtype
    op_desc->SetAttr("dtype", 0);
    op_desc->SetAttr("place", static_cast<int>(place));
    op_desc->SetAttr("name", name);
    op_desc->SetOutput("out", {name});
  }

389 390 391 392 393 394 395 396 397 398 399 400 401 402
  for (auto &param : params) {
    auto name = param.name();
    auto place = param.place().GetType();

    auto op_desc = local_program.MutableBlock(0)->PrependOp();
    op_desc->SetType("feed_with_place");
    op_desc->SetAttr("index", 0);
    // TODO(phlrain) : using tensor dtype
    op_desc->SetAttr("dtype", 0);
    op_desc->SetAttr("place", static_cast<int>(place));
    op_desc->SetAttr("name", name);
    op_desc->SetOutput("out", {name});
  }

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
  std::set<std::string> set_parameter_names;
  for (auto op_desc : backward_global_block->Program()->Block(0).AllOps()) {
    for (const auto &n : op_desc->Inputs()) {
      const auto &input_var_names = n.second;
      for (const auto &var_name : input_var_names) {
        set_parameter_names.insert(var_name);
      }
    }
  }

  for (auto &t : output_names) {
    set_parameter_names.insert(t);
  }

  for (auto &name : set_parameter_names) {
    if (!set_output_names.count(name)) {
      continue;
    }

    auto op_desc = local_program.MutableBlock(0)->AppendOp();
H
hong 已提交
423
    op_desc->SetType("shadow_output");
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    op_desc->SetAttr("name", name);
    op_desc->SetInput("x", {name});
    op_desc->SetOutput("out", {"@EMPTY@"});
  }

  paddle::translator::ProgramTranslator program_translator(&local_program,
                                                           program.get());

  program_translator.Translate();

  auto ir_res = paddle::dialect::PdOpLowerToKernelPass(program.get());

  return ir_res;
}

std::unique_ptr<::ir::Program> ConstructBackwardIrProgram(
    const paddle::framework::BlockDesc *backward_global_block,
    const std::vector<paddle::Tensor> &out_grad,
    const std::vector<paddle::Tensor *> &x_grad,
443 444
    const std::vector<paddle::Tensor *> &params_grad,
    const paddle::framework::Scope *scope) {
445 446 447 448 449
  auto ir_ctx = ::ir::IrContext::Instance();
  auto program = std::make_unique<::ir::Program>(ir_ctx);

  auto local_program =
      paddle::framework::ProgramDesc(*(backward_global_block->Program()));
450 451 452 453 454 455 456 457 458

  // get feed with data
  std::set<std::string> set_parameter_names;
  for (auto op_desc : backward_global_block->Program()->Block(0).AllOps()) {
    for (const auto &n : op_desc->Inputs()) {
      const auto &input_var_names = n.second;
      for (const auto &var_name : input_var_names) {
        set_parameter_names.insert(var_name);
      }
459
    }
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
  }

  for (auto &var_name : set_parameter_names) {
    if (scope->FindVar(var_name)) {
      auto tensor = scope->FindVar(var_name)->Get<phi::DenseTensor>();
      phi::AllocationType place(phi::AllocationType::UNDEFINED);
      if (tensor.initialized()) {
        place = tensor.place().GetType();
      }

      if (var_name == "@EMPTY@") {
        continue;
      }
      auto op_desc = local_program.MutableBlock(0)->PrependOp();
      op_desc->SetType("feed_with_place");
      op_desc->SetAttr("index", 0);
      // TODO(phlrain) : using tensor dtype
      op_desc->SetAttr("dtype", 0);
      op_desc->SetAttr("place", static_cast<int>(place));
      op_desc->SetAttr("name", var_name);
      op_desc->SetOutput("out", {var_name});
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
    }
  }

  std::vector<std::string> param_grad_names;
  for (auto &p_g : params_grad) {
    param_grad_names.push_back(p_g->name());
  }

  for (auto &t : x_grad) {
    param_grad_names.push_back(t->name());
  }
  for (auto &name : param_grad_names) {
    if (name == "@EMPTY@") {
      continue;
    }
    auto op_desc = local_program.MutableBlock(0)->AppendOp();
H
hong 已提交
497
    op_desc->SetType("shadow_output");
498 499 500 501 502 503 504 505 506 507 508 509 510 511
    op_desc->SetAttr("name", name);
    op_desc->SetInput("x", {name});
    op_desc->SetOutput("out", {"@EMPTY@"});
  }

  paddle::translator::ProgramTranslator program_translator(&local_program,
                                                           program.get());
  program_translator.Translate();

  auto res = paddle::dialect::PdOpLowerToKernelPass(program.get());

  return res;
}

512 513
}  // namespace framework
}  // namespace paddle