activation.py 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17
__all__ = [
18 19
    'ELU',
    'GELU',
20
    'Hardshrink',
W
WangXi 已提交
21
    'Tanh',
22 23
    'Hardtanh',
    'PReLU',
24
    'ReLU',
25 26
    'ReLU6',
    'SELU',
C
ceci3 已提交
27
    'LeakyReLU',
28
    'Sigmoid',
29
    'Softmax',
30 31 32 33
    'Softplus',
    'Softshrink',
    'Softsign',
    'Tanhshrink',
34
    'LogSigmoid',
35
    'LogSoftmax',
36
    'HSigmoid',
37 38
]

39 40 41
from ...fluid.dygraph import layers
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
42 43
from ...fluid.param_attr import ParamAttr
from ...fluid.initializer import Constant
44
from .. import functional as F
45 46


47 48 49 50
class ELU(layers.Layer):
    """
    ELU Activation.

51
    .. math::
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    
        ELU(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

67 68
            import paddle
            import numpy as np
69

70
            paddle.disable_static()
71

72 73 74 75 76
            x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
            m = paddle.nn.ELU(0.2)
            out = m(x)
            # [[-0.12642411  6.        ]
            #  [ 1.          15.6      ]]
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)


class GELU(layers.Layer):
    """
    GELU Activation.

    If approximate is True

94
    .. math::
95 96 97 98 99

        GELU(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else

100
    .. math::
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

        GELU(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

116 117
            import paddle
            import numpy as np
118

119
            paddle.disable_static()
120

121 122 123 124
            x = paddle.to_tensor(np.array([[-1, 0.5],[1, 1.5]]))
            
            m = paddle.nn.GELU()
            out = m(x) # [-0.158655 0.345731 0.841345 1.39979]
125

126 127
            m = paddle.nn.GELU(True)
            out = m(x) # [-0.158808 0.345714 0.841192 1.39957]
128 129 130 131 132 133 134 135 136 137 138
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class Hardshrink(layers.Layer):
    """
    Hardshrink Activation

    .. math::

        hardshrink(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x > threshold \\
            &x, & & if \ x < -threshold \\
            &0, & & if \ others
            \end{aligned}
            \right.

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

172
        x = paddle.to_tensor(np.array([-1, 0.3, 2.5]))
173 174 175 176 177 178 179 180 181 182
        m = paddle.nn.Hardshrink()
        out = m(x) # [-1., 0., 2.5]
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
183
        return F.hardshrink(x, self._threshold, self._name)
184 185


W
WangXi 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
class Tanh(layers.Layer):
    """
    Tanh Activation.

    .. math::
        Tanh(x) = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
            m = paddle.nn.Tanh()
            out = m(x)
            print(out.numpy())
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """

    def __init__(self, name=None):
        super(Tanh, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanh(x, self._name)


225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
class Hardtanh(layers.Layer):
    """
    Hardtanh Activation

    .. math::

        Hardtanh(x)= \\begin{cases}
                        max, \\text{if } x > max \\\\
                        min, \\text{if } x < min \\\\
                        x,  \\text{otherwise}
                      \\end{cases}

    Parameters:
        min (float, optional): The value of min for Hardtanh. Default is -1.
        max (float, optional): The value of max for Hardtanh. Default is 1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = paddle.to_tensor(np.array([-1.5, 0.3, 2.5]))
            m = paddle.nn.Hardtanh()
            out = m(x) # # [-1., 0.3, 1.]
    """

    def __init__(self, min=-1.0, max=1.0, name=None):
        super(Hardtanh, self).__init__()
        self._min = min
        self._max = max
        self._name = name

    def forward(self, x):
        return F.hardtanh(x, self._min, self._max, self._name)


270 271
class HSigmoid(layers.Layer):
    """
272 273
	:alias_main: paddle.nn.HSigmoid
	:alias: paddle.nn.HSigmoid,paddle.nn.layer.HSigmoid,paddle.nn.layer.activation.HSigmoid
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The feature size.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        param_attr (ParamAttr, optional): The parameter attribute for the learnable parameters/weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default: None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default: False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle import fluid, nn
          import paddle.fluid.dygraph as dg
          import paddle.nn.functional as F
          import numpy as np

          main = fluid.Program()
          start = fluid.Program()
          feature_size = 6
          num_classes = 8
          with fluid.unique_name.guard():
              with fluid.program_guard(main, start):
                  x = fluid.data("input", [-1, feature_size],
                              dtype="float32")
                  label = fluid.data("labels", [-1, 1], dtype="int64")
                  hsm = nn.HSigmoid(feature_size, num_classes)
                  y = hsm(x, label)

          place = fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(start)
          feed_dict = {
              "input": np.random.randn(4, feature_size).astype(np.float32),
              "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
          }
          y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
          print(y_np.shape)

          # (4, 1)
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 param_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 dtype="float32"):
        super(HSigmoid, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._param_attr = param_attr
        self._bias_attr = bias_attr

        self._dtype = dtype

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._param_attr,
            is_bias=False,
            dtype=self._dtype)
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype)

    def forward(self, input, label, path_table=None, path_code=None):
394
        out = F.hsigmoid(
395 396 397 398 399 400 401 402 403 404
            input,
            label,
            self.weight,
            self.bias,
            self._num_classes,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse)
        return out

405

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
class PReLU(layers.Layer):
    """
    PReLU Activation.

    .. math::

        PReLU(x) = max(0, x) + weight * min(0, x)

    Parameters:
        num_parameters (int, optional): Number of `weight` to learn. The supported values are:
            1 - a single parameter `alpha` is used for all input channels; 
            Number of channels - a seperate `alpha` is used for each input channel.
            Default is 1.
        init (float, optional): Init value of learnable `weight`. Default is 0.25.
        weight_attr(ParamAttr, optional): The parameter attribute for the learnable `weight`. 
            Default is None. For more information, please refer to :ref:`api_fluid_ParamAttr`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            data = np.array([[[[-2.0,  3.0, -4.0,  5.0],
                            [ 3.0, -4.0,  5.0, -6.0],
                            [-7.0, -8.0,  8.0,  9.0]],
                            [[ 1.0, -2.0, -3.0,  4.0],
                            [-5.0,  6.0,  7.0, -8.0],
                            [ 6.0,  7.0,  8.0,  9.0]]]], 'float32')
            x = paddle.to_tensor(data)
            m = paddle.nn.PReLU(1, 0.25)
            out = m(x)
            # [[[[-0.5 ,  3.  , -1.  ,  5.  ],
            #    [ 3.  , -1.  ,  5.  , -1.5 ],
            #    [-1.75, -2.  ,  8.  ,  9.  ]],
            #   [[ 1.  , -0.5 , -0.75,  4.  ],
            #    [-1.25,  6.  ,  7.  , -2.  ],
            #    [ 6.  ,  7.  ,  8.  ,  9.  ]]]]
    """

    def __init__(self, num_parameters=1, init=0.25, weight_attr=None,
                 name=None):
        super(PReLU, self).__init__()
        self._num_parameters = num_parameters
        self._init = init
        self._weight_attr = weight_attr
        self._name = name

        self._weight = self.create_parameter(
            attr=self._weight_attr,
            shape=[num_parameters],
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(init))

    def forward(self, x):
        return F.prelu(x, self._weight)


473 474 475 476
class ReLU(layers.Layer):
    """
    ReLU Activation.

477
    .. math::
478

479
        ReLU(x) = max(x, 0)
480 481

    Parameters:
482 483 484 485 486 487
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
488
    
489 490 491
    Examples:
        .. code-block:: python

492 493
            import paddle
            import numpy as np
494

495
            paddle.disable_static()
496

497 498 499
            x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
            m = paddle.nn.ReLU()
            out = m(x) # [0., 0., 1.]
500 501
    """

502
    def __init__(self, name=None):
503
        super(ReLU, self).__init__()
504
        self._name = name
505

506 507
    def forward(self, x):
        return F.relu(x, self._name)
508 509


510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
class ReLU6(layers.Layer):
    """
    ReLU6 Activation

    .. math::

        \text{ReLU6}(x) = \min(\max(0,x), 6)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
        m = paddle.nn.ReLU6()
        out = m(x) # [0, 0.3, 6]
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)


class SELU(layers.Layer):
    """
    SELU Activation

    .. math::

        \text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))), \\
        with\,alpha=1.6732632423543772848170429916717 and \\
        scale=1.0507009873554804934193349852946

    Parameters:
        scale (float, optional): The value of scale for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha for SELU. Default is 1.6732632423543772848170429916717
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([[0, 1],[2, 3]]))
        m = paddle.nn.SELU()
        out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)


C
ceci3 已提交
595 596 597 598 599 600
class LeakyReLU(layers.Layer):
    """
    Leaky ReLU Activation.

    .. math:

601 602 603 604 605 606 607
        LeakyReLU(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x >= 0 \\
            &negative\_slope * x, & & otherwise \\
            \end{aligned}
            \right. \\
C
ceci3 已提交
608 609

    Parameters:
610 611
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
612 613
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
C
ceci3 已提交
614
    
615 616 617
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
C
ceci3 已提交
618 619 620 621
    
    Examples:
        .. code-block:: python

622 623
            import paddle
            import numpy as np
C
ceci3 已提交
624

625
            paddle.disable_static()
626

627
            m = paddle.nn.LeakyReLU()
Z
zhupengyang 已提交
628
            x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
629
            out = m(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
630 631
    """

632
    def __init__(self, negative_slope=0.01, name=None):
C
ceci3 已提交
633
        super(LeakyReLU, self).__init__()
634
        self._negative_slope = negative_slope
635
        self._name = name
C
ceci3 已提交
636

637
    def forward(self, x):
638
        return F.leaky_relu(x, self._negative_slope, self._name)
C
ceci3 已提交
639 640


641 642
class Sigmoid(layers.Layer):
    """
643 644 645
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
    
    .. math::
S
swtkiwi 已提交
646

647
        Sigmoid(x) = \frac{1}{1 + e^{-x}}
648
    
649 650
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
651

652 653
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
654 655

    Returns:
656
        A callable object of Sigmoid.
657 658
    
    Examples:
659

660 661 662
        .. code-block:: python

          import numpy as np
663 664 665
          import paddle

          paddle.disable_static()
666
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
667
          m = paddle.nn.Sigmoid()
668
          x = paddle.to_tensor(input_data)
669 670
          output = m(x)
          print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
671 672
    """

673
    def __init__(self, name=None):
674
        super(Sigmoid, self).__init__()
675
        self.name = name
676

677 678
    def forward(self, x):
        return F.sigmoid(x, self.name)
679 680


681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
class Softplus(layers.Layer):
    """
    Softplus Activation

    .. math::

        \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
        \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        m = paddle.nn.Softplus()
        out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]

    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)


class Softshrink(layers.Layer):
    """
    Softshrink Activation

    .. math::

        \text{Softshrink}(x) =
        \begin{cases}
        x - threshold, & \text{ if } x > threshold \\
        x + threshold, & \text{ if } x < -threshold \\
        0, & \text{ otherwise }
        \end{cases}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
        m = paddle.nn.Softshrink()
        out = m(x) # [-0.4, 0, 0, 0.3]
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)


class Softsign(layers.Layer):
    """
    Softsign Activation

    .. math::

        \text{Softsign}(x) = \frac{x}{1 + |x|}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        m = paddle.nn.Softsign()
        out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)


class Tanhshrink(layers.Layer):
    """
    Tanhshrink Activation

    .. math::

        \text{Tanhshrink}(x) = x - \text{Tanh}(x)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        m = paddle.nn.Tanhshrink()
        out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)


842 843 844 845
class LogSigmoid(layers.Layer):
    """
    LogSigmoid Activation.
    
846
    .. math::
847

848
        LogSigmoid(x) = log \\frac{1}{1 + e^{-x}}
849 850 851 852 853 854 855 856 857 858 859 860 861

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

862 863
            import paddle
            import numpy as np
864

865
            paddle.disable_static()
866

867 868 869
            x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
            m = paddle.nn.LogSigmoid()
            out = m(x) # [-0.313262 -0.126928 -0.0485874 -0.0181499]
870 871 872 873 874 875 876 877 878 879
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
        return F.logsigmoid(x, self._name)


880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
class Softmax(layers.Layer):
    """
    Softmax Activation.

    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

        Softmax[i, j] = \\frac{\\exp(x[i, j])}{\\sum_j(exp(x[i, j])}

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Parameters:
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` < 0, it works the same way as
            :math:`axis + D` . Default is -1.
        dtype (str|np.dtype|core.VarDesc.VarType, optional): The desired data
            type of the output tensor. If dtype is specified, ``x`` is casted
            to ``dtype`` before the operation is performed. This is useful for 
            preventing data type overflows. Supported dtype: float32, float64.
            If ``dtype`` is None, the output Tensor has the same dtype as x.
            Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            x = np.array([[[2.0, 3.0, 4.0, 5.0],
                        [3.0, 4.0, 5.0, 6.0],
                        [7.0, 8.0, 8.0, 9.0]],
                        [[1.0, 2.0, 3.0, 4.0],
                        [5.0, 6.0, 7.0, 8.0],
                        [6.0, 7.0, 8.0, 9.0]]], 'float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Softmax()
            out = m(x)
            # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
            # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
            #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """

    def __init__(self, axis=-1, name=None):
        super(Softmax, self).__init__()
        self._axis = axis
        self._dtype = None
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._dtype, self._name)


1011 1012 1013 1014 1015 1016 1017
class LogSoftmax(layers.Layer):
    """
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

        Out[i, j] = log(softmax(x)) 
1018
                  = log(\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})
1019 1020

    Parameters:
1021 1022 1023 1024 1025 1026
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1027
 
1028 1029 1030
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
1031 1032 1033 1034

    Examples:
        .. code-block:: python

1035 1036
        import paddle
        import numpy as np
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        paddle.disable_static()

        x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                        [3.0, -4.0, 5.0, -6.0],
                        [-7.0, -8.0, 8.0, 9.0]],
                        [[1.0, -2.0, -3.0, 4.0],
                        [-5.0, 6.0, 7.0, -8.0],
                        [6.0, 7.0, 8.0, 9.0]]])
        m = paddle.nn.LogSoftmax()
        x = paddle.to_tensor(x)
        out = m(x)
        # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
        #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
        #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
        #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
        #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
        #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
1055 1056
    """

1057
    def __init__(self, axis=-1, name=None):
1058 1059
        super(LogSoftmax, self).__init__()
        self._axis = axis
1060
        self._name = name
1061

1062 1063
    def forward(self, x):
        return F.log_softmax(x, self._axis)