selected_rows_utils.cc 8.4 KB
Newer Older
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Q
qijun 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
qijun 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
qijun 已提交
9 10 11 12 13 14
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/selected_rows_utils.h"
Q
qijun 已提交
16 17

namespace paddle {
18
namespace framework {
19

Y
Yancey1989 已提交
20
struct ReAllocateVisitor {
21 22
  ReAllocateVisitor(const framework::DDim& dims, framework::Tensor* tensor)
      : dims_(dims), tensor_(tensor) {}
Y
Yancey1989 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

  template <typename T>
  void operator()() const {
    framework::Tensor cpu_tensor;
    platform::CPUPlace cpu;
    T* ptr = cpu_tensor.mutable_data<T>(dims_, cpu);
    const T* old_ptr =
        tensor_->memory_size() == 0 ? nullptr : tensor_->data<T>();
    if (old_ptr != nullptr) {
      std::copy(old_ptr, old_ptr + tensor_->numel(), ptr);
    }
    tensor_->ShareDataWith(cpu_tensor);
  }

  framework::DDim dims_;
Q
qiaolongfei 已提交
38
  framework::Tensor* tensor_;
Y
Yancey1989 已提交
39 40
};

Y
update  
Yancey1989 已提交
41
struct TensorCopyVisitor {
Y
Yancey1989 已提交
42 43 44 45
  TensorCopyVisitor(framework::Tensor* dst, int64_t dst_offset,
                    const framework::Tensor src, int64_t src_offset,
                    int64_t size)
      : dst_(dst),
Y
Yancey1989 已提交
46 47 48 49 50 51
        dst_offset_(dst_offset),
        src_(src),
        src_offset_(src_offset),
        size_(size) {}

  template <typename T>
D
dzhwinter 已提交
52
  void apply() const {
Y
Yancey1989 已提交
53 54 55 56
    // TODO(Yancey1989): support other place
    platform::CPUPlace cpu;
    memory::Copy(cpu, dst_->mutable_data<T>(cpu) + dst_offset_, cpu,
                 src_.data<T>() + src_offset_, size_ * sizeof(T));
Y
Yancey1989 已提交
57 58 59 60 61 62 63 64 65
  }

  framework::Tensor* dst_;
  int64_t dst_offset_;
  framework::Tensor src_;
  int64_t src_offset_;
  int64_t size_;
};

Q
Qiao Longfei 已提交
66 67 68 69 70 71 72
struct TensorFillVisitor {
  TensorFillVisitor(framework::Tensor* dst, int64_t dst_offset, int64_t size,
                    float value)
      : dst_(dst), dst_offset_(dst_offset), size_(size) {}

  template <typename T>
  void apply() const {
Q
Qiao Longfei 已提交
73
    // TODO(qiao): support other place
Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82 83 84 85
    platform::CPUPlace cpu;
    auto* tensor_data = dst_->mutable_data<T>(cpu);
    auto* start = tensor_data + dst_offset_;
    auto* end = start + size_;
    std::fill(start, end, static_cast<T>(0.0));
  }

  framework::Tensor* dst_;
  int64_t dst_offset_;
  int64_t size_;
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
                       const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {
    // the 2st field, rows information
    auto& rows = selected_rows.rows();
    uint64_t size = rows.size();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    for (uint64_t i = 0; i < size; ++i) {
      os.write(reinterpret_cast<const char*>(&rows[i]), sizeof(rows[i]));
    }
  }
  {
    // the 3st field, the height of SelectedRows
    int64_t height = selected_rows.height();
    os.write(reinterpret_cast<const char*>(&height), sizeof(height));
  }
  // the 4st field, Tensor data
Y
Yi Wang 已提交
107
  TensorToStream(os, selected_rows.value(), dev_ctx);
108 109
}

110 111 112 113 114 115 116 117
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
  auto place = selected_rows.place();
  dev_ctx = pool.Get(place);
  SerializeToStream(os, selected_rows, *dev_ctx);
}

118
void DeserializeFromStream(std::istream& os, SelectedRows* selected_rows) {
119 120 121 122 123 124
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext* dev_ctx;
  dev_ctx = pool.Get(platform::CPUPlace());
  DeserializeFromStream(os, selected_rows, *dev_ctx);
}

Y
Yancey 已提交
125 126
void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
                           const platform::DeviceContext& dev_ctx) {
127 128 129 130
  {
    // the 1st field, unit32_t version for SelectedRows
    uint32_t version;
    is.read(reinterpret_cast<char*>(&version), sizeof(version));
131 132 133
    PADDLE_ENFORCE_EQ(version, 0U,
                      platform::errors::InvalidArgument(
                          "Only version 0 SelectedRows is supported."));
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  }
  {
    // the 2st field, rows information
    uint64_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    auto& rows = *selected_rows->mutable_rows();
    rows.resize(size);
    for (uint64_t i = 0; i < size; ++i) {
      is.read(reinterpret_cast<char*>(&rows[i]), sizeof(int64_t));
    }
  }
  {
    // the 3st field, the height of the SelectedRows
    int64_t height;
    is.read(reinterpret_cast<char*>(&height), sizeof(int64_t));
    selected_rows->set_height(height);
  }
  // the 4st field, tensor which contains the data
Y
Yi Wang 已提交
152
  TensorFromStream(is, selected_rows->mutable_value(), dev_ctx);
153 154
}

Y
Yancey1989 已提交
155 156 157 158 159
bool SelectedRows::HasKey(int64_t key) const {
  return std::find(rows_.begin(), rows_.end(), key) == rows_.end() ? false
                                                                   : true;
}

Q
Qiao Longfei 已提交
160 161 162 163 164 165 166 167 168 169 170
int64_t SelectedRows::AutoGrownIndex(int64_t key, bool auto_grown,
                                     bool is_test) {
  if (is_test) {
    auto iter = id_to_index_.find(key);
    if (iter == id_to_index_.end()) {
      return -1;
    } else {
      return iter->second;
    }
  }

171 172 173 174
  rwlock_->RDLock();
  auto iter = id_to_index_.find(key);
  if (iter == id_to_index_.end()) {
    rwlock_->UNLock();
175 176 177
    PADDLE_ENFORCE_EQ(
        auto_grown, true,
        platform::errors::NotFound("Input key(%lld) is not found.", key));
178 179 180 181 182
    rwlock_->WRLock();
    auto map_size = id_to_index_.size();
    auto vector_size = rows_.size();
    if (map_size != vector_size) {
      rwlock_->UNLock();
183 184 185
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Row map size(%zu) should be equal to rows size(%zu).", map_size,
          vector_size));
186 187 188
    }
    auto write_iter = id_to_index_.find(key);
    if (write_iter == id_to_index_.end()) {
189
      int row_num = rows_.size();
190 191
      if (row_num == value_->dims()[0]) {
        rwlock_->UNLock();
192 193 194 195
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Selected rows is full, then length exceed the length of first "
            "dimension (%d).",
            row_num));
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
      }
      // key logic to put a key into id_to_index_
      rows_.push_back(key);
      auto index = static_cast<int64_t>(rows_.size() - 1);
      id_to_index_[key] = index;
      rwlock_->UNLock();
      return index;
    } else {
      auto index = write_iter->second;
      rwlock_->UNLock();
      return index;
    }
  } else {
    auto index = iter->second;
    rwlock_->UNLock();
    return index;
  }
}

void SelectedRows::SyncIndex() {
  rwlock_->WRLock();
  id_to_index_.clear();
  for (size_t i = 0; i < rows_.size(); ++i) {
    id_to_index_[rows_[i]] = i;
  }
  rwlock_->UNLock();
}

void SelectedRows::Get(const framework::Tensor& ids, framework::Tensor* value,
Q
Qiao Longfei 已提交
225
                       bool auto_grown, bool is_test) {
226 227 228
  PADDLE_ENFORCE_EQ(value->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The value tensor is not initialized."));
229
  if (ids.numel() == 0) {
M
minqiyang 已提交
230
    VLOG(3) << "keys is empty, please check data!";
Q
qiaolongfei 已提交
231 232
  } else {
    int64_t value_width = value_->numel() / value_->dims()[0];
233 234 235 236 237 238 239
    PADDLE_ENFORCE_EQ(
        value_width, value->numel() / value->dims()[0],
        platform::errors::InvalidArgument(
            "Output tensor should have the same shape with table "
            "except the first dimmension, excepted value width not counting "
            "the first dimension is %d, actual value width is %d.",
            value_width, value->numel() / value->dims()[0]));
240
    for (int i = 0; i < ids.numel(); ++i) {
Q
Qiao Longfei 已提交
241 242
      auto id = ids.data<int64_t>()[i];
      int64_t index = AutoGrownIndex(id, auto_grown, is_test);
Q
Qiao Longfei 已提交
243
      if (index < 0) {
Q
Qiao Longfei 已提交
244
        VLOG(5) << "id " << id << " not in the table, return 0";
Q
Qiao Longfei 已提交
245
        framework::VisitDataType(
Y
Yu Yang 已提交
246
            value_->type(),
Q
Qiao Longfei 已提交
247 248 249
            TensorFillVisitor(value, i * value_width, value_width, 0.0));
      } else {
        framework::VisitDataType(
Y
Yu Yang 已提交
250
            value_->type(),
Q
Qiao Longfei 已提交
251 252 253
            TensorCopyVisitor(value, i * value_width, *value_.get(),
                              index * value_width, value_width));
      }
Y
Yancey1989 已提交
254 255
    }
  }
Y
Yancey1989 已提交
256 257
}

258
}  // namespace framework
Q
qijun 已提交
259
}  // namespace paddle