test_Evaluator.cpp 7.8 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <vector>
#include "ModelConfig.pb.h"
#include "paddle/trainer/Trainer.h"
#include "TestUtil.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

P_DECLARE_bool(use_gpu);
P_DECLARE_int32(gpu_id);
P_DECLARE_bool(thread_local_rand_use_global_seed);

enum InputType {
  INPUT_DATA,         // dense vector
  INPUT_LABEL,        // id
  INPUT_DATA_TARGET,  // dense vector, but no gradient
  INPUT_SEQUENCE_DATA,
  INPUT_SEQUENCE_LABEL,
  INPUT_SPARSE_NON_VALUE_DATA
};

struct InputDef {
  InputType inputType;
  string name;
  size_t dim;
};

struct TestConfig {
  EvaluatorConfig evaluatorConfig;
  std::vector<InputDef> inputDefs;
  bool testAccumulate;
  TestConfig() : testAccumulate(true) {}
};

50 51 52 53
void testEvaluator(TestConfig testConf,
                   string testEvaluatorName,
                   size_t batchSize,
                   bool useGpu) {
Z
zhangjinchao01 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#ifdef PADDLE_ONLY_CPU
  if (useGpu) return;
#endif
  FLAGS_use_gpu = useGpu;
  testConf.evaluatorConfig.set_name(testEvaluatorName);
  LOG(INFO) << " evaluator_type=" << testConf.evaluatorConfig.type()
            << " useGpu=" << useGpu;

  std::vector<Argument> arguments;
  for (size_t i = 0; i < testConf.inputDefs.size(); ++i) {
    Argument data;
    size_t dim = testConf.inputDefs[i].dim;
    switch (testConf.inputDefs[i].inputType) {
      case INPUT_DATA:
      case INPUT_SEQUENCE_DATA:
      case INPUT_DATA_TARGET:
        data.value = Matrix::create(batchSize, dim, false, useGpu);
        data.value->randomizeUniform();

        // make sure output > 0 && output < 1
        data.value->add(-0.5);
        data.value->sigmoid(*data.value);
        break;
      case INPUT_LABEL:
      case INPUT_SEQUENCE_LABEL:
        data.ids = VectorT<int>::create(batchSize, useGpu);
        data.ids->rand(dim);  // now rand number can be 0 to inputDefs[i].dim.
        break;
      case INPUT_SPARSE_NON_VALUE_DATA:
83 84 85 86
        data.value = makeRandomSparseMatrix(batchSize,
                                            dim,
                                            /* withValue= */ false,
                                            useGpu);
Z
zhangjinchao01 已提交
87 88 89 90 91 92
        break;
      default:
        LOG(FATAL) << " unknown inputType ";
        return;
    }

93 94 95 96 97 98 99 100 101
    ICpuGpuVectorPtr sequenceStartPositions;
    if (testConf.inputDefs[i].inputType == INPUT_SEQUENCE_DATA ||
        testConf.inputDefs[i].inputType == INPUT_SEQUENCE_LABEL) {
      if (!sequenceStartPositions) {
        generateSequenceStartPositions(batchSize, sequenceStartPositions);
      }
      data.sequenceStartPositions = sequenceStartPositions;
    }

Z
zhangjinchao01 已提交
102 103 104 105 106
    arguments.push_back(data);
  }

  Evaluator* testEvaluator = Evaluator::create(testConf.evaluatorConfig);
  double totalScore = 0.0;
107
  testEvaluator->start();
Z
zhangjinchao01 已提交
108 109
  totalScore += testEvaluator->evalImp(arguments);
  testEvaluator->updateSamplesNum(arguments);
110
  testEvaluator->finish();
Z
zhangjinchao01 已提交
111 112 113 114
  LOG(INFO) << *testEvaluator;

  double totalScore2 = 0.0;
  if (testConf.testAccumulate) {
115
    testEvaluator->start();
Z
zhangjinchao01 已提交
116
    totalScore2 += testEvaluator->evalImp(arguments);
117
    testEvaluator->finish();
Z
zhangjinchao01 已提交
118 119 120 121
    EXPECT_LE(fabs(totalScore - totalScore2), 1.0e-5);
  }
}

122 123 124
void testEvaluatorAll(TestConfig testConf,
                      string testEvaluatorName,
                      size_t batchSize) {
Z
zhangjinchao01 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  testEvaluator(testConf, testEvaluatorName, batchSize, true);
  testEvaluator(testConf, testEvaluatorName, batchSize, false);
}

TEST(Evaluator, classification_error) {
  TestConfig config;
  config.evaluatorConfig.set_type("classification_error");

  config.inputDefs.push_back({INPUT_DATA, "output", 50});
  config.inputDefs.push_back({INPUT_LABEL, "label", 50});
  testEvaluatorAll(config, "classification_error", 100);
  config.inputDefs.push_back({INPUT_DATA, "weight", 1});
  testEvaluatorAll(config, "classification_error_weight", 100);

  // multi binary labels
  config.inputDefs.clear();
  config.inputDefs.push_back({INPUT_DATA, "output", 100});
  config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "label", 100});
  // Not support GPU
  testEvaluator(config, "classification_error_multi_binary_label", 50, false);

  config.evaluatorConfig.set_classification_threshold(0.4);
  config.inputDefs.push_back({INPUT_DATA, "weight", 1});
  // Not support GPU
149 150
  testEvaluator(
      config, "classification_error_weight_multi_binary_label", 50, false);
Z
zhangjinchao01 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
}

TEST(Evaluator, sum) {
  TestConfig config;
  config.evaluatorConfig.set_type("sum");

  // sum of output
  config.inputDefs.push_back({INPUT_DATA, "output", 10});
  testEvaluatorAll(config, "sum_output", 200);
  config.inputDefs.push_back({INPUT_DATA, "weight", 1});
  testEvaluatorAll(config, "sum_output_weight", 200);

  // sum of label
  config.inputDefs.clear();
  config.inputDefs.push_back({INPUT_LABEL, "label", 10});
  testEvaluatorAll(config, "sum_label", 200);
  config.inputDefs.push_back({INPUT_DATA, "weight", 1});
  testEvaluatorAll(config, "sum_label_weight", 200);
}

TEST(Evaluator, last_column_sum) {
  TestConfig config;
  config.evaluatorConfig.set_type("last-column-sum");

  config.inputDefs.push_back({INPUT_DATA, "output", 50});
  testEvaluatorAll(config, "last-column-sum", 200);
  config.inputDefs.push_back({INPUT_DATA, "weight", 1});
  testEvaluatorAll(config, "last-column-sum_weight", 200);
}

TEST(Evaluator, last_column_auc) {
  TestConfig config;
  config.evaluatorConfig.set_type("last-column-auc");

  config.inputDefs.push_back({INPUT_DATA, "output", 2});
  config.inputDefs.push_back({INPUT_LABEL, "label", 2});
  testEvaluatorAll(config, "last-column-auc", 500);
  config.inputDefs.push_back({INPUT_DATA, "weight", 1});
  testEvaluatorAll(config, "last-column-auc_weight", 200);
}

TEST(Evaluator, precision_recall) {
  TestConfig config;
  config.evaluatorConfig.set_type("precision_recall");

  config.inputDefs.push_back({INPUT_DATA, "output", 10});
  config.inputDefs.push_back({INPUT_LABEL, "label", 10});
  testEvaluatorAll(config, "precision_recall", 200);
  config.inputDefs.push_back({INPUT_DATA, "weight", 1});
  testEvaluatorAll(config, "precision_recall_weight", 200);

  LOG(INFO) << "positive_label = 5";
  config.evaluatorConfig.set_positive_label(5);
  testEvaluatorAll(config, "precision_recall_weight", 200);

  // multi binary labels
  config.inputDefs.clear();
  config.evaluatorConfig.set_positive_label(-1);
  config.inputDefs.push_back({INPUT_DATA, "output", 10});
  config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "label", 10});
  // Not support GPU
  testEvaluator(config, "precision_recall_multi_binary_label", 100, false);

  LOG(INFO) << "classification_threshold = 0.4";
  config.evaluatorConfig.set_classification_threshold(0.4);
  config.inputDefs.push_back({INPUT_DATA, "weight", 1});
  // Not support GPU
218 219
  testEvaluator(
      config, "precision_recall_weight_multi_binary_label", 100, false);
Z
zhangjinchao01 已提交
220 221
}

222 223 224 225 226 227 228 229 230
TEST(Evaluator, ctc_error_evaluator) {
  TestConfig config;
  config.evaluatorConfig.set_type("ctc_edit_distance");

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "output", 32});
  config.inputDefs.push_back({INPUT_SEQUENCE_LABEL, "label", 1});
  testEvaluatorAll(config, "ctc_error_evaluator", 100);
}

Z
zhangjinchao01 已提交
231 232 233 234 235 236 237
int main(int argc, char** argv) {
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}