DetectionMAPEvaluator.cpp 10.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Evaluator.h"
#include "paddle/gserver/layers/DetectionUtil.h"

using std::map;
using std::vector;
using std::pair;
using std::make_pair;

namespace paddle {

/**
 * @brief detection map Evaluator
 *
 * The config file api is detection_map_evaluator.
 */
class DetectionMAPEvaluator : public Evaluator {
public:
  DetectionMAPEvaluator()
      : evaluateDifficult_(false), cpuOutput_(nullptr), cpuLabel_(nullptr) {}

  virtual void start() {
    Evaluator::start();
    allTruePos_.clear();
    allFalsePos_.clear();
    numPos_.clear();
  }

  virtual real evalImp(std::vector<Argument>& arguments) {
    overlapThreshold_ = config_.overlap_threshold();
    backgroundId_ = config_.background_id();
    evaluateDifficult_ = config_.evaluate_difficult();
    apType_ = config_.ap_type();

    MatrixPtr detectTmpValue = arguments[0].value;
    Matrix::resizeOrCreate(cpuOutput_,
                           detectTmpValue->getHeight(),
                           detectTmpValue->getWidth(),
                           false,
                           false);

    MatrixPtr labelTmpValue = arguments[1].value;
    Matrix::resizeOrCreate(cpuLabel_,
                           labelTmpValue->getHeight(),
                           labelTmpValue->getWidth(),
                           false,
                           false);

    cpuOutput_->copyFrom(*detectTmpValue);
    cpuLabel_->copyFrom(*labelTmpValue);

    Argument label = arguments[1];
    const int* labelIndex = label.sequenceStartPositions->getData(false);
    size_t batchSize = label.getNumSequences();

    vector<map<size_t, vector<NormalizedBBox>>> allGTBBoxes;
    vector<map<size_t, vector<pair<real, NormalizedBBox>>>> allDetectBBoxes;

    for (size_t n = 0; n < batchSize; ++n) {
      map<size_t, vector<NormalizedBBox>> bboxes;
      for (int i = labelIndex[n]; i < labelIndex[n + 1]; ++i) {
        vector<NormalizedBBox> bbox;
        getBBoxFromLabelData(cpuLabel_->getData() + i * 6, 1, bbox);
        int c = cpuLabel_->getData()[i * 6];
        bboxes[c].push_back(bbox[0]);
      }
      allGTBBoxes.push_back(bboxes);
    }

Y
yangyaming 已提交
83 84 85
    size_t n = 0;
    const real* cpuOutputData = cpuOutput_->getData();
    for (size_t imgId = 0; imgId < batchSize; ++imgId) {
Y
yangyaming 已提交
86
      map<size_t, vector<pair<real, NormalizedBBox>>> bboxes;
Y
yangyaming 已提交
87 88
      size_t curImgId = static_cast<size_t>((cpuOutputData + n * 7)[0]);
      while (curImgId == imgId && n < cpuOutput_->getHeight()) {
Y
yangyaming 已提交
89 90 91
        vector<real> label;
        vector<real> score;
        vector<NormalizedBBox> bbox;
Y
yangyaming 已提交
92
        getBBoxFromDetectData(cpuOutputData + n * 7, 1, label, score, bbox);
Y
yangyaming 已提交
93 94
        bboxes[label[0]].push_back(make_pair(score[0], bbox[0]));
        ++n;
Y
yangyaming 已提交
95
        curImgId = static_cast<size_t>((cpuOutputData + n * 7)[0]);
Y
yangyaming 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
      }
      allDetectBBoxes.push_back(bboxes);
    }

    for (size_t n = 0; n < batchSize; ++n) {
      for (map<size_t, vector<NormalizedBBox>>::iterator it =
               allGTBBoxes[n].begin();
           it != allGTBBoxes[n].end();
           ++it) {
        size_t count = 0;
        if (evaluateDifficult_) {
          count = it->second.size();
        } else {
          for (size_t i = 0; i < it->second.size(); ++i)
            if (!(it->second[i].isDifficult)) ++count;
        }
        if (numPos_.find(it->first) == numPos_.end() && count != 0) {
          numPos_[it->first] = count;
        } else {
          numPos_[it->first] += count;
        }
      }
    }

    // calcTFPos
Y
yangyaming 已提交
121
    calcTFPos(batchSize, allGTBBoxes, allDetectBBoxes);
Y
yangyaming 已提交
122 123 124 125 126 127

    return 0;
  }

  virtual void printStats(std::ostream& os) const {
    real mAP = calcMAP();
Y
yangyaming 已提交
128
    os << "Detection mAP=" << mAP;
Y
yangyaming 已提交
129 130 131 132 133 134 135 136 137 138
  }

  virtual void distributeEval(ParameterClient2* client) {
    LOG(FATAL) << "Distribute detection evaluation not implemented.";
  }

protected:
  void calcTFPos(const size_t batchSize,
                 const vector<map<size_t, vector<NormalizedBBox>>>& allGTBBoxes,
                 const vector<map<size_t, vector<pair<real, NormalizedBBox>>>>&
Y
yangyaming 已提交
139
                     allDetectBBoxes) {
Y
yangyaming 已提交
140 141 142 143 144 145 146 147
    for (size_t n = 0; n < allDetectBBoxes.size(); ++n) {
      if (allGTBBoxes[n].size() == 0) {
        for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
                 it = allDetectBBoxes[n].begin();
             it != allDetectBBoxes[n].end();
             ++it) {
          size_t label = it->first;
          for (size_t i = 0; i < it->second.size(); ++i) {
Y
yangyaming 已提交
148 149
            allTruePos_[label].push_back(make_pair(it->second[i].first, 0));
            allFalsePos_[label].push_back(make_pair(it->second[i].first, 1));
Y
yangyaming 已提交
150 151 152 153 154 155 156 157 158 159 160
          }
        }
      } else {
        for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
                 it = allDetectBBoxes[n].begin();
             it != allDetectBBoxes[n].end();
             ++it) {
          size_t label = it->first;
          vector<pair<real, NormalizedBBox>> predBBoxes = it->second;
          if (allGTBBoxes[n].find(label) == allGTBBoxes[n].end()) {
            for (size_t i = 0; i < predBBoxes.size(); ++i) {
Y
yangyaming 已提交
161 162
              allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0));
              allFalsePos_[label].push_back(make_pair(predBBoxes[i].first, 1));
Y
yangyaming 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
            }
          } else {
            vector<NormalizedBBox> gtBBoxes =
                allGTBBoxes[n].find(label)->second;
            vector<bool> visited(gtBBoxes.size(), false);
            // Sort detections in descend order based on scores
            std::sort(predBBoxes.begin(),
                      predBBoxes.end(),
                      sortScorePairDescend<NormalizedBBox>);
            for (size_t i = 0; i < predBBoxes.size(); ++i) {
              real maxOverlap = -1.0;
              size_t maxIdx = 0;
              for (size_t j = 0; j < gtBBoxes.size(); ++j) {
                real overlap =
                    jaccardOverlap(predBBoxes[i].second, gtBBoxes[j]);
                if (overlap > maxOverlap) {
                  maxOverlap = overlap;
                  maxIdx = j;
                }
              }
              if (maxOverlap > overlapThreshold_) {
                if (evaluateDifficult_ ||
                    (!evaluateDifficult_ && !gtBBoxes[maxIdx].isDifficult)) {
                  if (!visited[maxIdx]) {
Y
yangyaming 已提交
187
                    allTruePos_[label].push_back(
Y
yangyaming 已提交
188
                        make_pair(predBBoxes[i].first, 1));
Y
yangyaming 已提交
189
                    allFalsePos_[label].push_back(
Y
yangyaming 已提交
190 191 192
                        make_pair(predBBoxes[i].first, 0));
                    visited[maxIdx] = true;
                  } else {
Y
yangyaming 已提交
193
                    allTruePos_[label].push_back(
Y
yangyaming 已提交
194
                        make_pair(predBBoxes[i].first, 0));
Y
yangyaming 已提交
195
                    allFalsePos_[label].push_back(
Y
yangyaming 已提交
196 197 198 199
                        make_pair(predBBoxes[i].first, 1));
                  }
                }
              } else {
Y
yangyaming 已提交
200 201
                allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0));
                allFalsePos_[label].push_back(
Y
yangyaming 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
                    make_pair(predBBoxes[i].first, 1));
              }
            }
          }
        }
      }
    }
  }

  real calcMAP() const {
    real mAP = 0.0;
    size_t count = 0;
    for (map<size_t, size_t>::const_iterator it = numPos_.begin();
         it != numPos_.end();
         ++it) {
      size_t label = it->first;
      size_t labelNumPos = it->second;
      if (labelNumPos == 0 || allTruePos_.find(label) == allTruePos_.end())
        continue;
      vector<pair<real, size_t>> labelTruePos = allTruePos_.find(label)->second;
      vector<pair<real, size_t>> labelFalsePos =
          allFalsePos_.find(label)->second;
      // Compute average precision.
      vector<size_t> tpCumSum;
      getAccumulation(labelTruePos, &tpCumSum);
      vector<size_t> fpCumSum;
      getAccumulation(labelFalsePos, &fpCumSum);
      std::vector<real> precision, recall;
      size_t num = tpCumSum.size();
      // Compute Precision.
      for (size_t i = 0; i < num; ++i) {
        CHECK_LE(tpCumSum[i], labelNumPos);
        precision.push_back(static_cast<real>(tpCumSum[i]) /
                            static_cast<real>(tpCumSum[i] + fpCumSum[i]));
        recall.push_back(static_cast<real>(tpCumSum[i]) / labelNumPos);
      }
      // VOC2007 style
      if (apType_ == "11point") {
        vector<real> maxPrecisions(11, 0.0);
        int startIdx = num - 1;
        for (int j = 10; j >= 0; --j)
          for (int i = startIdx; i >= 0; --i) {
            if (recall[i] < j / 10.) {
              startIdx = i;
              if (j > 0) maxPrecisions[j - 1] = maxPrecisions[j];
              break;
            } else {
              if (maxPrecisions[j] < precision[i])
                maxPrecisions[j] = precision[i];
            }
          }
        for (int j = 10; j >= 0; --j) mAP += maxPrecisions[j] / 11;
        ++count;
      } else if (apType_ == "Integral") {
        // Nature integral
        real averagePrecisions = 0.;
        real prevRecall = 0.;
        for (size_t i = 0; i < num; ++i) {
          if (fabs(recall[i] - prevRecall) > 1e-6)
            averagePrecisions += precision[i] * fabs(recall[i] - prevRecall);
          prevRecall = recall[i];
        }
        mAP += averagePrecisions;
        ++count;
      } else {
        LOG(FATAL) << "Unkown ap version: " << apType_;
      }
    }
    if (count != 0) mAP /= count;
Y
yangyaming 已提交
271
    return mAP * 100;
Y
yangyaming 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  }

  void getAccumulation(vector<pair<real, size_t>> inPairs,
                       vector<size_t>* accuVec) const {
    std::stable_sort(
        inPairs.begin(), inPairs.end(), sortScorePairDescend<size_t>);
    accuVec->clear();
    size_t sum = 0;
    for (size_t i = 0; i < inPairs.size(); ++i) {
      sum += inPairs[i].second;
      accuVec->push_back(sum);
    }
  }

  std::string getTypeImpl() const { return "detection_map"; }

Y
yangyaming 已提交
288
  real getValueImpl() const { return calcMAP(); }
Y
yangyaming 已提交
289 290

private:
Y
yangyaming 已提交
291 292 293 294
  real overlapThreshold_;  // overlap threshold when determining whether matched
  bool evaluateDifficult_;  // whether evaluate difficult ground truth
  size_t backgroundId_;     // class index of background
  std::string apType_;      // how to calculate mAP (Integral or 11point)
Y
yangyaming 已提交
295 296 297 298

  MatrixPtr cpuOutput_;
  MatrixPtr cpuLabel_;

Y
yangyaming 已提交
299 300 301 302 303
  map<size_t, size_t> numPos_;  // counts of true objects each classification
  map<size_t, vector<pair<real, size_t>>>
      allTruePos_;  // true positive prediction
  map<size_t, vector<pair<real, size_t>>>
      allFalsePos_;  // false positive prediction
Y
yangyaming 已提交
304 305 306 307 308
};

REGISTER_EVALUATOR(detection_map, DetectionMAPEvaluator);

}  // namespace paddle