operator_kernel_configs.h 4.6 KB
Newer Older
X
polish  
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <unordered_map>
#include <vector>

namespace paddle {
namespace framework {

Z
zhongpu 已提交
24
// thread-safe.
X
polish  
Xin Pan 已提交
25 26 27 28 29 30
template <typename TAlgorithm>
class AlgorithmsCache {
 public:
  AlgorithmsCache() : search_times_(0) { hash_.clear(); }
  // Caches the best algorithm for a given
  // combination of tensor dimensions & compute data type.
Z
zhongpu 已提交
31 32 33 34 35 36 37 38
  // cudnn_dtype set for different data type
  TAlgorithm GetAlgorithm(const std::vector<int64_t>& dims1,
                          const std::vector<int64_t>& dims2,
                          const std::vector<int>& strides,
                          const std::vector<int>& paddings,
                          const std::vector<int>& dilations, int algorithmFlags,
                          int64_t cudnn_dtype,
                          std::function<TAlgorithm()> gen_func);
X
polish  
Xin Pan 已提交
39 40 41 42 43 44 45

  TAlgorithm GetAlgorithm(int64_t area, int search_times, int algorithmFlags,
                          std::function<TAlgorithm()> gen_func);

 private:
  std::unordered_map<int64_t, TAlgorithm> hash_;
  int search_times_;
Z
zhongpu 已提交
46
  std::mutex cache_mutex;
X
polish  
Xin Pan 已提交
47 48 49 50 51 52
};

template <typename TAlgorithm>
TAlgorithm framework::AlgorithmsCache<TAlgorithm>::GetAlgorithm(
    const std::vector<int64_t>& dims1, const std::vector<int64_t>& dims2,
    const std::vector<int>& strides, const std::vector<int>& paddings,
Z
zhongpu 已提交
53
    const std::vector<int>& dilations, int algorithmFlags, int64_t cudnn_dtype,
X
polish  
Xin Pan 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    std::function<TAlgorithm()> gen_func) {
  int64_t seed = 0;
  // Hash all of the inputs, use to try and look up a previously
  // discovered algorithm, or fall back to generating a new one.
  std::hash<int64_t> hashFn;
  // do hash like boost
  // https://stackoverflow.com/questions/2590677/how-do-i-combine-hash-values-in-c0x
  for (const auto num : dims1) {
    seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
  }

  for (const auto num : dims2) {
    seed ^= hashFn(num) + 0x9e3779b9 + (seed << 6) + (seed >> 2) + 1;
  }

  for (const auto num : strides) {
    seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
            (seed >> 2) + 2;
  }

  for (const auto num : paddings) {
    seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
            (seed >> 2) + 3;
  }

  for (const auto num : dilations) {
    seed ^= hashFn(static_cast<int64_t>(num)) + 0x9e3779b9 + (seed << 6) +
            (seed >> 2) + 4;
  }

  seed ^= hashFn(static_cast<int64_t>(algorithmFlags)) + 0x9e3779b9 +
          (seed << 6) + (seed >> 2) + 5;

Z
zhongpu 已提交
87 88 89
  seed ^= hashFn(static_cast<int64_t>(cudnn_dtype)) + 0x9e3779b9 + (seed << 6) +
          (seed >> 2) + 6;

90 91
  VLOG(10) << "seed:" << seed << ", hash_.size:" << hash_.size();

X
polish  
Xin Pan 已提交
92 93
  if (seed == 0) return gen_func();

Z
zhongpu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  TAlgorithm ret;
  auto it = hash_.end();
  bool have_found = false;
  {
    std::lock_guard<std::mutex> lock(cache_mutex);
    it = hash_.find(seed);

    if (it != hash_.end()) {
      ret = it->second;
      have_found = true;
    }
  }

  if (!have_found) {
    ret = gen_func();
    std::lock_guard<std::mutex> lock(cache_mutex);
    hash_[seed] = ret;
X
polish  
Xin Pan 已提交
111
  }
Z
zhongpu 已提交
112 113

  return ret;
X
polish  
Xin Pan 已提交
114 115 116 117 118 119
}

template <typename TAlgorithm>
TAlgorithm AlgorithmsCache<TAlgorithm>::GetAlgorithm(
    int64_t area, int search_times, int algorithmFlags,
    std::function<TAlgorithm()> gen_func) {
Z
zhongpu 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  auto it = hash_.end();
  {
    std::lock_guard<std::mutex> lock(cache_mutex);
    it = hash_.find(area);

    if (it != hash_.end()) {
      return it->second;
    }
  }

  bool gene_flag = false;

  {
    std::lock_guard<std::mutex> lock(cache_mutex);
    gene_flag = (search_times_ < search_times);
X
polish  
Xin Pan 已提交
135
  }
Z
zhongpu 已提交
136 137 138 139 140

  TAlgorithm algo{};
  if (gene_flag) {
    algo = gen_func();
    std::lock_guard<std::mutex> lock(cache_mutex);
X
polish  
Xin Pan 已提交
141 142 143 144
    hash_[area] = algo;
    ++search_times_;
    return algo;
  }
Z
zhongpu 已提交
145

X
polish  
Xin Pan 已提交
146
  int64_t min = static_cast<uint64_t>(INT_MAX);
Z
zhongpu 已提交
147 148 149 150 151 152 153
  {
    std::lock_guard<std::mutex> lock(cache_mutex);
    for (const auto& m : hash_) {
      if (m.first < min) {
        min = m.first;
        algo = m.second;
      }
X
polish  
Xin Pan 已提交
154 155 156 157 158 159 160
    }
  }
  return algo;
}

}  // namespace framework
}  // namespace paddle