test_serialization.py 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import unittest

import numpy as np

19 20
import paddle
import paddle.nn.functional as F
21 22
from paddle import nn, static
from paddle.distributed import fleet
23
from paddle.distributed.auto_parallel.static.dist_context import (
24 25 26
    DistributedContext,
    set_default_distributed_context,
)
27
from paddle.distributed.auto_parallel.static.process_mesh_v2 import ProcessMesh
28 29 30
from paddle.distributed.fleet import auto
from paddle.fluid.core import TensorDistAttr
from paddle.fluid.framework import Program
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

paddle.enable_static()

batch_size = 4
epoch_num = 10
hidden_size = 1024
sequence_len = 512
_g_process_mesh = auto.ProcessMesh(mesh=[[0, 1], [2, 3]], dim_names=['x', 'y'])


class MLPLayer(nn.Layer):
    def __init__(
        self,
        hidden_size=1024,
        intermediate_size=4 * 1024,
        dropout_ratio=0.1,
        initializer_range=0.02,
    ):
49
        super().__init__()
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        d_model = hidden_size
        dim_feedforward = intermediate_size
        param_initializer = nn.initializer.Normal(
            mean=0.0, std=initializer_range
        )

        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.linear0 = nn.Linear(
            d_model,
            dim_feedforward,
            weight_attr=paddle.ParamAttr(initializer=param_initializer),
            bias_attr=None,
        )
        self.linear1 = nn.Linear(
            dim_feedforward,
            d_model,
            weight_attr=paddle.ParamAttr(initializer=param_initializer),
            bias_attr=None,
        )

    def forward(self, input):
        out = self.norm(input)
        auto.shard_tensor(
            self.linear0.weight,
            process_mesh=_g_process_mesh[0],
            shard_spec=[None, 'y'],
        )
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        auto.shard_tensor(
            self.linear1.weight,
            process_mesh=_g_process_mesh[1],
            shard_spec=['y', None],
        )
        out = auto.shard_op(self.linear1, process_mesh=_g_process_mesh)(out)

        return out


def get_random_inputs_and_labels(input_shape, label_shape):
    input = np.random.random(size=input_shape).astype('float32')
    label = np.random.random(size=label_shape).astype('float32')
    return input, label


def batch_generator_creator():
    def __reader__():
        for _ in range(batch_size):
            batch_input, batch_label = get_random_inputs_and_labels(
                [batch_size, sequence_len, hidden_size],
                [batch_size, sequence_len, 1],
            )
            yield batch_input, batch_label

    return __reader__


def get_program():
    dist_strategy = fleet.DistributedStrategy()
    dist_strategy.semi_auto = True
    # fleet.init(is_collective=True, strategy=dist_strategy)

    train_program = static.Program()
    start_program = static.Program()
    with static.program_guard(train_program, start_program):

        # input
        input = static.data(
            name="input",
            shape=[batch_size, sequence_len, hidden_size],
            dtype='float32',
        )
        label = static.data(
            name="label", shape=[batch_size, sequence_len, 1], dtype='float32'
        )
        data_holder = [input, label]
        # dataloader
127
        dataloader = paddle.fluid.io.DataLoader.from_generator(
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
            feed_list=data_holder, capacity=4 * batch_size, iterable=False
        )
        dataloader.set_batch_generator(
            batch_generator_creator(), places=paddle.static.cuda_places()
        )
        # data dist_attr
        auto.shard_tensor(
            input, process_mesh=_g_process_mesh[0], shard_spec=['y', None, None]
        )
        auto.shard_tensor(
            label, process_mesh=_g_process_mesh[0], shard_spec=['y', None, None]
        )

        mlp_start = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            dropout_ratio=0.1,
            initializer_range=0.02,
        )
        pred = mlp_start(input)

        mlp_mid = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            dropout_ratio=0.1,
            initializer_range=0.02,
        )
        pred = mlp_mid(pred)

        mlp_end = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            dropout_ratio=0.1,
            initializer_range=0.02,
        )
        pred = mlp_end(pred)

        error_cost = paddle.nn.functional.square_error_cost(pred, label)
        loss = paddle.mean(error_cost)

        optimizer = paddle.optimizer.Adam(
            learning_rate=0.00001,
            beta1=0.9,
            beta2=0.999,
            epsilon=1e-08,
            grad_clip=None,
        )

        feed_vars = {"inputs": [input], "labels": [label]}
        fetch_vars = {"loss": [loss]}

    return (
        train_program,
        start_program,
        dataloader,
        loss,
        optimizer,
        feed_vars,
        fetch_vars,
    )


class TestDistAttrSerialization(unittest.TestCase):
    def test_serialization_tensor(self):
        train_program = static.Program()
        start_program = static.Program()
        with static.program_guard(train_program, start_program):
            input = static.data(name="input", shape=[2, 3], dtype='float32')
        dist_attr = input.dist_attr
        dist_attr.process_mesh = ProcessMesh([[0, 1, 2], [3, 4, 5]])
        dist_attr.dims_mapping = [0, -1]
        dist_attr.batch_dim = 1
        dist_attr.dynamic_dims = [1, 1]
        dist_attr_data = dist_attr.serialize_to_string()

    def test_serialization_opearator(self):
        train_program = static.Program()
        start_program = static.Program()
        with static.program_guard(train_program, start_program):
            input = static.data(name="input", shape=[2, 3], dtype='float32')
            input1 = static.data(name="input1", shape=[3, 4], dtype='float32')
            output = paddle.matmul(input, input1)
        op = train_program.current_block().ops[0]
        process_mesh = ProcessMesh([[0, 1, 2], [3, 4, 5]])
        op_dist_attr = op.dist_attr

        op_dist_attr.process_mesh = process_mesh
        # Set the distributed attribute of input
        input_dist_attr = TensorDistAttr(input.desc)
        input_dist_attr.dims_mapping = [0, -1]
        op_dist_attr.set_input_dist_attr(input.name, input_dist_attr)
        # Set the distributed attribute of input1
        input1_dist_attr = TensorDistAttr(input1.desc)
        input1_dist_attr.dims_mapping = [-1, 1]
        op_dist_attr.set_input_dist_attr(input1.name, input1_dist_attr)
        # Set the distributed attribute of output
        output_dist_attr = TensorDistAttr(output.desc)
        output_dist_attr.dims_mapping = [0, 1]
        op_dist_attr.set_output_dist_attr(output.name, output_dist_attr)

    def test_serialization_program(self):
        set_default_distributed_context(DistributedContext())
        (
            train_program,
            start_program,
            dataloader,
            loss,
            optimizer,
            feed_vars,
            fetch_vars,
        ) = get_program()
        dist_context = DistributedContext(
            train_program, start_program, optimizer, loss, feed_vars, fetch_vars
        )
        dist_context.initialize(with_cpp=True)

        # Distribute context will clone the original train program to serial_main_program
        original_program = dist_context.serial_main_program
        for block in original_program.blocks:
            for tensor in block.vars.values():
                dist_attr_data = tensor.dist_attr.serialize_to_string()
                tensor._set_attr("dist_attr", dist_attr_data)
            for op in block.ops:
                dist_attr_data = op.dist_attr.serialize_to_string()
                op._set_attr("dist_attr", dist_attr_data)

        program_data = original_program.desc.serialize_to_string()
        program = Program.parse_from_string(program_data)

        for block in program.blocks:
            for tensor in block.vars.values():
                dist_attr_data = tensor.attr("dist_attr")
                tensor._remove_attr("dist_attr")
                tensor.dist_attr.parse_from_string(dist_attr_data)
            for op in block.ops:
                dist_attr_data = op.attr("dist_attr")
                op._remove_attr("dist_attr")
                op.dist_attr.parse_from_string(dist_attr_data)

        self.assertEqual(len(original_program.blocks), len(program.blocks))
        for original_block, block in zip(
            original_program.blocks, program.blocks
        ):
            self.assertEqual(
                len(original_block.vars.values()), len(block.vars.values())
            )
            for original_tensor in original_block.vars.values():
                self.assertEqual(
                    original_tensor.dist_attr,
                    block.vars[original_tensor.name].dist_attr,
                )
            self.assertEqual(len(original_block.ops), len(block.ops))
            for original_op, op in zip(original_block.ops, block.ops):
                self.assertEqual(original_op.dist_attr, op.dist_attr)


if __name__ == "__main__":
    unittest.main()