tunable_space.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# Notice that the following codes are modified from KerasTuner to implement our own tuner.
16 17
# Please refer to https://github.com/keras-team/keras-tuner/blob/master/keras_tuner/engine/hyperparameters.py.

18
from .tunable_variable import Boolean, Choice, Fixed, FloatRange, IntRange
19 20


21
class TunableSpace:
22 23 24 25 26 27 28
    """
    A TunableSpace is constructed by the tunable variables.
    """

    def __init__(self):
        # Tunable variables for this tunable variables
        self._variables = {}
C
chenxujun 已提交
29
        # Specific values corresponding to each tunable variable
30 31 32 33 34 35
        self._values = {}

    @property
    def variables(self):
        return self._variables

36 37 38 39
    @variables.setter
    def variables(self, variables):
        self._variables = variables

40 41 42 43
    @property
    def values(self):
        return self._values

44 45 46 47
    @values.setter
    def values(self, values):
        self._values = values

48 49 50 51
    def get_value(self, name):
        if name in self.values:
            return self.values[name]
        else:
52
            raise KeyError(f"{name} does not exist.")
53 54 55 56 57

    def set_value(self, name, value):
        if name in self.values:
            self.values[name] = value
        else:
58
            raise KeyError(f"{name} does not exist.")
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

    def _exists(self, name):
        if name in self._variables:
            return True
        return False

    def _retrieve(self, tv):
        tv = tv.__class__.from_state(tv.get_state())
        if self._exists(tv.name):
            return self.get_value(tv.name)
        return self._register(tv)

    def _register(self, tv):
        self._variables[tv.name] = tv
        if tv.name not in self.values:
            self.values[tv.name] = tv.default
        return self.values[tv.name]

    def __getitem__(self, name):
        return self.get_value(name)

    def __setitem__(self, name, value):
        self.set_value(name, value)

    def __contains__(self, name):
        try:
            self.get_value(name)
            return True
        except (KeyError, ValueError):
            return False

    def fixed(self, name, default):
        tv = Fixed(name=name, default=default)
        return self._retrieve(tv)

    def boolean(self, name, default=False):
        tv = Boolean(name=name, default=default)
        return self._retrieve(tv)

    def choice(self, name, values, default=None):
        tv = Choice(name=name, values=values, default=default)
        return self._retrieve(tv)

    def int_range(self, name, start, stop, step=1, default=None):
103 104 105
        tv = IntRange(
            name=name, start=start, stop=stop, step=step, default=default
        )
106 107 108
        return self._retrieve(tv)

    def float_range(self, name, start, stop, step=None, default=None):
109 110 111
        tv = FloatRange(
            name=name, start=start, stop=stop, step=step, default=default
        )
112 113 114 115
        return self._retrieve(tv)

    def get_state(self):
        return {
116 117 118 119
            "variables": [
                {"class_name": v.__class__.__name__, "state": v.get_state()}
                for v in self._variables.values()
            ],
120
            "values": dict(self.values.items()),
121 122 123 124 125 126 127 128
        }

    @classmethod
    def from_state(cls, state):
        ts = cls()
        for v in state["variables"]:
            v = _deserialize_tunable_variable(v)
            ts._variables[v.name] = v
129
        ts._values = dict(state["values"].items())
130 131 132 133 134 135 136 137 138 139
        return ts


def _deserialize_tunable_variable(state):
    classes = (Boolean, Fixed, Choice, IntRange, FloatRange)
    cls_name_to_cls = {cls.__name__: cls for cls in classes}

    if isinstance(state, classes):
        return state

140 141 142 143 144
    if (
        not isinstance(state, dict)
        or "class_name" not in state
        or "state" not in state
    ):
145
        raise ValueError(
146 147 148 149
            "Expect state to be a python dict containing class_name and state as keys, but found {}".format(
                state
            )
        )
150 151 152 153

    cls_name = state["class_name"]
    cls = cls_name_to_cls[cls_name]
    if cls is None:
154
        raise ValueError(f"Unknown class name {cls_name}")
155 156 157 158

    cls_state = state["state"]
    deserialized_object = cls.from_state(cls_state)
    return deserialized_object