planner.py 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import random
17 18
import time
from collections import OrderedDict
19 20 21 22 23 24
from functools import reduce
from itertools import chain, product

import numpy as np

import paddle
25
from paddle.distributed.fleet import auto
26

27
from .cost_model import estimate_cost
28
from .dist_attribute import OperatorDistAttr, TensorDistAttr
29 30 31 32 33 34 35 36 37 38 39 40
from .dist_context import DistributedContext, DistributedOperatorContext
from .dist_op import DistributedOperator
from .operators.common import (
    get_distributed_operator_impl_container,
    is_elementwise_op,
)
from .process_group import get_process_group
from .utils import (
    get_all_distributed_main_program,
    update_op_dims_mapping_by_default_dist_impl,
    update_op_dims_mapping_by_elementwise_like_dist_impl,
)
41 42 43 44 45 46 47 48

paddle.seed(123)
random.seed(123)
np.random.seed(123)


class PlanFilter:
    @staticmethod
49 50 51
    def check_dims_mapping_for_tensor(
        process_mesh_topology, tensor_shape, dims_mapping
    ):
52 53 54 55 56
        valid = True
        assert len(tensor_shape) == len(dims_mapping)

        for idx, dim_mapping in enumerate(dims_mapping):
            if dim_mapping != -1:
57 58 59 60
                if (
                    tensor_shape[idx] % process_mesh_topology[dim_mapping] != 0
                    or dims_mapping.count(dim_mapping) > 1
                ):
61 62 63 64 65 66 67 68 69 70 71 72 73
                    valid = False
            if dim_mapping != -1 and process_mesh_topology[0] == 1:
                valid = False

        return valid

    @staticmethod
    def check_dims_mapping_for_op(op, op_dist_attr, vars):
        process_mesh = op_dist_attr.process_mesh
        assert process_mesh is not None, "The process mesh should not be None."
        for var_name in op.input_arg_names:
            dims_mapping = op_dist_attr.get_input_dims_mapping(var_name)
            if not PlanFilter.check_dims_mapping_for_tensor(
74
                process_mesh.shape, vars[var_name].shape, dims_mapping
75
            ):
76 77 78 79 80 81 82 83 84
                return False
            if vars[var_name].is_data and len(dims_mapping) > 1:
                for dim in dims_mapping[1:]:
                    if dim != -1:
                        return False

        for var_name in op.output_arg_names:
            dims_mapping = op_dist_attr.get_output_dims_mapping(var_name)
            if not PlanFilter.check_dims_mapping_for_tensor(
85
                process_mesh.shape, vars[var_name].shape, dims_mapping
86
            ):
87 88 89 90 91 92
                return False

        return True

    @staticmethod
    def check_dims_mapping_for_special_op(op, op_dist_attr, vars):
93
        # NOTE: Those ops has some partition limits, and will be solved when corresponding dist op implemented in the future.
94 95 96 97 98
        if (
            op.type == "elementwise_add"
            or op.type == 'layer_norm'
            or op.type == "softmax_with_cross_entropy"
        ):
99 100 101 102 103 104 105 106 107 108 109 110 111 112
            for name in op.input_arg_names:
                for item in op_dist_attr.get_input_dims_mapping(name):
                    if item != -1:
                        return False
            for name in op.output_arg_names:
                for item in op_dist_attr.get_output_dims_mapping(name):
                    if item != -1:
                        return False
        if op.type == "lookup_table_v2":
            for name in op.input_arg_names:
                if name == 'pos_embeddings':
                    for item in op_dist_attr.get_input_dims_mapping(name):
                        if item != -1:
                            return False
113 114 115 116 117 118
        return True


class PlanSpace:
    not_enum_ops = ["create_py_reader", "create_double_buffer_reader", "read"]
    special_vars = [
119 120 121
        "lod_tensor_blocking_queue_0",
        "create_py_reader_0",
        "double_buffer_0",
122 123 124
    ]

    @staticmethod
125 126 127
    def _enum_dims_mapping(
        process_mesh_topology, visited, path, depth, res, tensor_shape
    ):
128 129 130 131 132 133
        """Enumerate dims mapping of tensor by the given process_mesh_topology"""
        nums = list(range(-1, len(process_mesh_topology)))
        if depth == len(tensor_shape):
            valid = True
            for idx, item in enumerate(path):
                if item != -1:
134 135 136 137
                    if (
                        tensor_shape[idx] % process_mesh_topology[item] != 0
                        or path.count(item) > 1
                    ):
138 139 140 141 142 143 144 145 146 147
                        valid = False
            if valid:
                res.append(copy.deepcopy(path))
            return

        for i in range(len(nums)):
            if not visited[i]:
                if i != 0:
                    visited[i] = True
                path.append(nums[i])
148 149 150 151 152 153 154 155
                PlanSpace._enum_dims_mapping(
                    process_mesh_topology,
                    visited,
                    path,
                    depth + 1,
                    res,
                    tensor_shape,
                )
156 157 158 159 160 161
                visited[i] = False
                path.pop()

    @staticmethod
    def enum_process_mesh_topology(processes):
        """Enumerate all process meshes with the given processes."""
162 163 164
        assert (
            processes >= 1
        ), "The processes must be number and greater than 0."
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        # compute divisors
        divisors = []
        for i in range(1, processes + 1):
            if processes % i == 0:
                divisors.append(i)

        # compute valid process mesh
        results = []
        for i in range(len(divisors) - 1, 0, -1):
            result = []
            result.append(divisors[i])
            if i == len(divisors) - 1:
                results.append(copy.deepcopy(result))
                continue

            j = 1
            while j < len(divisors):
                if len(result) == 1:
                    result.append(divisors[j])
                elif len(result) == 2:
                    if processes % (result[0] * result[1]) == 0:
                        if processes // (result[0] * result[1]) == 1:
                            results.append(copy.deepcopy(result))
                            break
                        else:
                            result.append(processes // (result[0] * result[1]))
                            results.append(copy.deepcopy(result))
                            result.pop(-1)
                            result.pop(-1)
                            j += 1
                    else:
                        if result[0] * result[1] < processes:
                            result.pop(-1)
                            j += 1
                        else:
                            break
        return results

    @staticmethod
    def _enum_valid_dist_attr_for_op(program, op, process_mesh):
        """Enumerate the valid distributed attribute for op based on the given process mesh."""
        vars = program.global_block().vars
        dims_mapping_dict = OrderedDict()
        op_valid_dist_attrs = []
        dist_op_impl_container = get_distributed_operator_impl_container(
210 211
            op.type
        )
212 213 214 215 216

        # enumerate all valid dims mapping of tensor when process mesh given
        for var_name in chain(op.input_arg_names, op.output_arg_names):
            visited = [
                False
217
                for _ in range(len(list(range(-1, len(process_mesh.shape)))))
218 219 220 221
            ]
            depth = 0
            path = []
            dims_mapping_list = []
222
            PlanSpace._enum_dims_mapping(
223
                process_mesh.shape,
224 225 226 227 228 229
                visited,
                path,
                depth,
                dims_mapping_list,
                vars[var_name].shape,
            )
230 231 232 233 234
            dims_mapping_dict[var_name] = copy.deepcopy(dims_mapping_list)

        # compose dims mapping
        composed_dims_mapping_list = list(
            product(
235 236 237
                *[dims_mapping_dict[key] for key in dims_mapping_dict.keys()]
            )
        )
238
        for composed_dims_mapping in composed_dims_mapping_list:
239
            op_dist_attr = OperatorDistAttr()
240 241 242 243 244
            op_dist_attr.process_mesh = process_mesh
            var_names = list(dims_mapping_dict.keys())

            for idx, dims_mapping in enumerate(composed_dims_mapping):
                if var_names[idx] in op.input_arg_names:
245 246 247
                    op_dist_attr.set_input_dims_mapping(
                        var_names[idx], dims_mapping
                    )
248
                elif var_names[idx] in op.output_arg_names:
249
                    op_dist_attr.set_output_dims_mapping(
250 251
                        var_names[idx], dims_mapping
                    )
252 253
                else:
                    raise ValueError(
254 255 256 257
                        "The {varname} is not input or output of op {op}.".format(
                            varname='var_names[idx]', op='op'
                        )
                    )
258 259 260

            dist_op = DistributedOperator(op, op_dist_attr)
            if dist_op_impl_container is None:
261
                if is_elementwise_op(op.type):
262 263 264 265
                    changed = True
                    valid = True
                    try:
                        changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
266 267
                            dist_op
                        )
268 269 270 271
                    except Exception as e:
                        valid = False
                    if valid and not changed:
                        if PlanFilter.check_dims_mapping_for_op(
272
                            op, dist_op.dist_attr, vars
273
                        ) and PlanFilter.check_dims_mapping_for_special_op(
274 275
                            op, dist_op.dist_attr, vars
                        ):
276 277
                            dist_op.dist_attr.impl_type = "elementwise"
                            dist_op.dist_attr.impl_idx = 0
278 279 280 281 282 283 284
                            op_valid_dist_attrs.append(dist_op.dist_attr)
                    continue
                else:
                    changed = True
                    valid = True
                    try:
                        changed = update_op_dims_mapping_by_default_dist_impl(
285 286
                            dist_op
                        )
287 288 289 290
                    except Exception as e:
                        valid = False
                    if valid and not changed:
                        if PlanFilter.check_dims_mapping_for_op(
291
                            op, dist_op.dist_attr, vars
292
                        ) and PlanFilter.check_dims_mapping_for_special_op(
293 294
                            op, dist_op.dist_attr, vars
                        ):
295 296
                            dist_op.dist_attr.impl_type = "default"
                            dist_op.dist_attr.impl_idx = 0
297 298 299
                            op_valid_dist_attrs.append(dist_op.dist_attr)
                    continue
            # if op has distributed implements, find all valid dist attr of this op
300
            impls = dist_op_impl_container.impls
301 302 303
            for idx, impl in enumerate(impls):
                if impl.is_auto_compatible(dist_op):
                    if PlanFilter.check_dims_mapping_for_op(
304 305
                        op, dist_op.dist_attr, vars
                    ):
306
                        dist_op.dist_attr.impl_type = dist_op.serial_op.type
307 308 309 310 311
                        dist_op.dist_attr.impl_idx = idx
                        op_valid_dist_attrs.append(dist_op.dist_attr)

        # set default dist attr for some special ops whose distributed attributes can not be enumerated
        if not op_valid_dist_attrs:
312
            op_dist_attr = OperatorDistAttr()
313 314 315
            op_dist_attr.process_mesh = process_mesh
            for var_name in op.input_arg_names:
                op_dist_attr.set_input_dims_mapping(
316
                    vars[var_name].name, [-1 for i in vars[var_name].shape]
317
                )
318 319
            for var_name in op.output_arg_names:
                op_dist_attr.set_output_dims_mapping(
320
                    vars[var_name].name, [-1 for i in vars[var_name].shape]
321
                )
322 323
            # The dist op must be built after the dist attr has been completely constructed
            dist_op = DistributedOperator(op, op_dist_attr)
324 325
            dist_op.dist_attr.impl_type = "default"
            dist_op.dist_attr.impl_idx = 0
326 327 328 329 330
            op_valid_dist_attrs.append(dist_op.dist_attr)

        return op_valid_dist_attrs

    @staticmethod
331 332 333
    def enum_valid_dist_attr_for_program(
        program, process_mesh_topology, is_pipeline=False
    ):
334 335 336 337 338
        """Enumerate valid distributed attributes for all ops in program."""
        valid_dist_attr_dict = OrderedDict()
        ops = program.global_block().ops
        vars = program.global_block().vars

339
        processes = reduce(lambda x, y: x * y, process_mesh_topology, 1)
340
        global_group = list(range(processes))
341 342 343 344 345 346 347 348 349 350
        global_process_mesh = None
        pipeline_process_meshes = None

        # in the pipeline mode, there are some process meshes
        if is_pipeline:
            pipeline_stages = process_mesh_topology[-1]
            op_count_per_stage = len(ops) // pipeline_stages
            if len(process_mesh_topology) > 1:
                process_mesh_shape = process_mesh_topology[:-1]
                per_process_mesh_group = processes // pipeline_stages
351 352 353 354 355 356 357 358 359 360 361 362 363 364
                pipeline_process_meshes = [
                    auto.ProcessMesh(
                        mesh=np.array(
                            global_group[
                                i
                                * per_process_mesh_group : (i + 1)
                                * per_process_mesh_group
                            ]
                        )
                        .reshape(process_mesh_shape)
                        .tolist()
                    )
                    for i in range(pipeline_stages)
                ]
365 366 367 368 369 370
            elif len(process_mesh_topology) == 1:
                pipeline_process_meshes = [
                    auto.ProcessMesh(mesh=[i]) for i in range(pipeline_stages)
                ]
        else:
            if len(process_mesh_topology) > 1:
371 372 373 374 375
                global_process_mesh = auto.ProcessMesh(
                    mesh=np.array(global_group)
                    .reshape(process_mesh_topology)
                    .tolist()
                )
376 377 378 379 380 381 382 383 384
            else:
                global_process_mesh = auto.ProcessMesh(mesh=global_group)

        # enumerate valid distributed attribute for each op in the program
        for idx, op in enumerate(ops):
            op_valid_dist_attrs = None
            op_process_mesh = global_process_mesh
            pipeline_stage = -1
            if pipeline_process_meshes is not None:
385 386 387 388 389
                pipeline_stage = (
                    idx // op_count_per_stage
                    if idx // op_count_per_stage < len(pipeline_process_meshes)
                    else idx // op_count_per_stage - 1
                )
390 391 392 393 394
                if pipeline_stage >= len(pipeline_process_meshes):
                    pipeline_stage = len(pipeline_process_meshes) - 1
                op_process_mesh = pipeline_process_meshes[pipeline_stage]

            if op.type in PlanSpace.not_enum_ops:
395
                op_dist_attr = OperatorDistAttr()
396 397 398 399 400 401
                op_dist_attr.process_mesh = op_process_mesh
                for var_name in op.input_arg_names:
                    if var_name in PlanSpace.special_vars:
                        op_dist_attr.set_input_dims_mapping(var_name, [])
                    else:
                        dims_mapping = [-1 for i in vars[var_name].shape]
402
                        op_dist_attr.set_input_dims_mapping(
403 404
                            var_name, dims_mapping
                        )
405 406 407 408 409 410

                for var_name in op.output_arg_names:
                    if var_name in PlanSpace.special_vars:
                        op_dist_attr.set_output_dims_mapping(var_name, [])
                    else:
                        dims_mapping = [-1 for i in vars[var_name].shape]
411
                        op_dist_attr.set_output_dims_mapping(
412 413
                            var_name, dims_mapping
                        )
414 415 416 417
                op_valid_dist_attrs = [op_dist_attr]
                pipeline_stage = 0 if pipeline_stage != -1 else pipeline_stage
            else:
                op_valid_dist_attrs = PlanSpace._enum_valid_dist_attr_for_op(
418 419
                    program, op, op_process_mesh
                )
420

421 422
            assert (
                op_valid_dist_attrs is not None
423
            ), f"Enumerate {op} valid distributed attribute failed."
424
            valid_dist_attr_dict[op.desc.id()] = [
425 426
                op_valid_dist_attrs,
                pipeline_stage,
427
            ]
428

429 430 431 432 433
        return (
            valid_dist_attr_dict,
            pipeline_process_meshes,
            global_process_mesh,
        )
434 435 436 437 438 439 440 441


class SearchAlgorithm:
    def __init__(self, name):
        self._name = name

    @property
    def name(self):
442
        self.name = self._name
443 444 445 446 447 448

    def search(self):
        raise NotImplementedError("Please Implement this method in subclass.")


class MCMC(SearchAlgorithm):
449
    def __init__(self, serial_program_info, parallelizer, max_search_times=5):
450
        super().__init__("mcmc")
451 452
        self._serial_program_info = serial_program_info
        self._max_search_times = max_search_times
453
        self._parallelizer = parallelizer
454 455 456 457 458

    @property
    def serial_program_info(self):
        return self._serial_program_info

459 460 461 462
    @property
    def parallelizer(self):
        return self._parallelizer

463 464 465 466
    @property
    def max_search_times(self):
        return self._max_search_times

467 468 469
    def make_special_op_unshard(
        self, op, ops, vars, dist_context, valid_dist_attr_dict
    ):
470 471 472
        if op.type == "softmax_with_cross_entropy":
            for var_name in op.input_arg_names:
                dims_mapping = dist_context.get_op_dist_attr_for_program(
473 474 475 476 477 478 479 480
                    op
                ).get_input_dims_mapping(var_name)
                if (
                    dims_mapping
                    != dist_context.get_tensor_dist_attr_for_program(
                        vars[var_name]
                    ).dims_mapping
                ):
481 482 483 484
                    has_changed = False
                    for search_op in ops:
                        if var_name in search_op.output_arg_names:
                            op_dist_attr_list = valid_dist_attr_dict[
485 486
                                search_op.desc.id()
                            ][0]
487
                            for op_dist_attr in op_dist_attr_list:
488 489 490 491 492 493
                                if (
                                    op_dist_attr.get_output_dims_mapping(
                                        var_name
                                    )
                                    == dims_mapping
                                ):
494
                                    dist_context.set_op_dist_attr_for_program(
495 496
                                        search_op, op_dist_attr
                                    )
497
                                    for name in search_op.output_arg_names:
498
                                        tensor_dist_attr = TensorDistAttr()
499 500
                                        tensor_dist_attr.process_mesh = (
                                            op_dist_attr.process_mesh
501 502
                                        )
                                        tensor_dist_attr.dims_mapping = op_dist_attr.get_output_dims_mapping(
503 504
                                            name
                                        )
505
                                        dist_context.set_tensor_dist_attr_for_program(
506 507
                                            vars[name], tensor_dist_attr
                                        )
508 509 510 511 512 513
                                    has_changed = True
                                    break
                        if has_changed:
                            break
                    if not has_changed:
                        raise ValueError(
514 515
                            "Change softmax_with_cross_entropy dist attr failed"
                        )
516

517 518 519 520 521 522 523
    def init_program(
        self,
        valid_dist_attr_dict,
        program,
        pipeline_process_meshes,
        global_process_mesh,
    ):
524 525 526 527 528 529 530
        ops = program.global_block().ops
        vars = program.global_block().vars
        new_dist_context = DistributedContext()

        for op in ops:
            op_valid_dist_attr_list = valid_dist_attr_dict[op.desc.id()][0]
            random_op_dist_attr = np.random.randint(
531 532
                len(op_valid_dist_attr_list)
            )
533 534 535 536 537
            init_op_dist_attr = op_valid_dist_attr_list[random_op_dist_attr]
            new_dist_context.set_op_dist_attr_for_program(op, init_op_dist_attr)
            for var_name in op.input_arg_names:
                if var_name == "lod_tensor_blocking_queue_0":
                    continue
538 539 540 541 542 543
                if (
                    new_dist_context.get_tensor_dist_attr_for_program(
                        vars[var_name]
                    )
                    is None
                ):
544
                    tensor_dist_attr = TensorDistAttr()
545 546 547 548 549 550
                    tensor_dist_attr.process_mesh = (
                        init_op_dist_attr.process_mesh
                    )
                    tensor_dist_attr.dims_mapping = (
                        init_op_dist_attr.get_input_dims_mapping(var_name)
                    )
551
                    new_dist_context.set_tensor_dist_attr_for_program(
552 553
                        vars[var_name], tensor_dist_attr
                    )
554 555

            for var_name in op.output_arg_names:
556
                tensor_dist_attr = TensorDistAttr()
557
                tensor_dist_attr.process_mesh = init_op_dist_attr.process_mesh
558 559 560
                tensor_dist_attr.dims_mapping = (
                    init_op_dist_attr.get_output_dims_mapping(var_name)
                )
561
                new_dist_context.set_tensor_dist_attr_for_program(
562 563
                    vars[var_name], tensor_dist_attr
                )
564 565

            # NOTE: this is a temporary solution to make softmax_with_cross_entropy unshard
566 567 568
            self.make_special_op_unshard(
                op, ops, vars, new_dist_context, valid_dist_attr_dict
            )
569 570 571 572 573 574 575 576 577 578

        # add process meshes to distributed context
        if global_process_mesh is not None:
            new_dist_context.add_process_mesh(global_process_mesh)
        elif pipeline_process_meshes is not None:
            for process_mesh in pipeline_process_meshes:
                new_dist_context.add_process_mesh(process_mesh)

        return new_dist_context

579 580 581
    def estimate_searched_strategy_cost(
        self, dist_context, pipeline_process_meshes=None
    ):
582 583 584
        cost = None
        # get all distributed programs
        all_dist_main_program = get_all_distributed_main_program(
585 586 587
            self.serial_program_info, dist_context, self.parallelizer
        )
        pipeline_config = (
588 589 590 591
            [
                process_mesh.process_ids
                for process_mesh in pipeline_process_meshes
            ]
592 593 594
            if pipeline_process_meshes is not None
            else None
        )
595 596 597 598 599 600 601 602 603 604 605 606
        microbatch_size = 1
        for program in all_dist_main_program:
            searched_batch_size = False
            for var in program.list_vars():
                if var.is_data and "@RESHARD" in var.name:
                    microbatch_size = var.shape[0]
                    searched_batch_size = True
                    break
            if searched_batch_size:
                break

        from .utils import get_standalone_cost_data
607

608 609 610
        standalone_cost_data = get_standalone_cost_data(all_dist_main_program)

        # cost model does not support cluster argument
611 612 613 614 615 616 617
        cost = estimate_cost(
            all_dist_main_program,
            cluster=None,
            pipeline_config=pipeline_config,
            standalone_cost_data=standalone_cost_data,
            batch_size=microbatch_size,
        )
618 619 620 621 622 623 624

        return cost

    def set_tensor_dist_attr(self, op, op_dist_attr, vars, dist_context):
        # set output tensor distributed attribute
        for var_name in op.output_arg_names:
            process_mesh = op_dist_attr.process_mesh
625
            tensor_dist_attr = TensorDistAttr()
626
            tensor_dist_attr.process_mesh = process_mesh
627 628 629
            tensor_dist_attr.dims_mapping = (
                op_dist_attr.get_output_dims_mapping(var_name)
            )
630
            dist_context.set_tensor_dist_attr_for_program(
631 632
                vars[var_name], tensor_dist_attr
            )
633 634 635 636 637

        # set input tensor distributed attribute if input is data or parameter
        for var_name in op.input_arg_names:
            if vars[var_name].is_parameter or vars[var_name].is_data:
                process_mesh = op_dist_attr.process_mesh
638
                tensor_dist_attr = TensorDistAttr()
639
                tensor_dist_attr.process_mesh = process_mesh
640 641 642
                tensor_dist_attr.dims_mapping = (
                    op_dist_attr.get_input_dims_mapping(var_name)
                )
643
                dist_context.set_tensor_dist_attr_for_program(
644 645
                    vars[var_name], tensor_dist_attr
                )
646 647 648

    def change_process_mesh(self, op, changed_process_mesh, vars, dist_context):
        dist_context.get_op_dist_attr_for_program(
649 650
            op
        ).process_mesh = changed_process_mesh
651
        for var_name in op.output_arg_names:
652
            dist_context.get_tensor_dist_attr_for_program(
653 654
                vars[var_name]
            ).process_mesh = changed_process_mesh
655 656
        for var_name in op.input_arg_names:
            if vars[var_name].is_parameter or vars[var_name].is_data:
657
                dist_context.get_tensor_dist_attr_for_program(
658 659 660 661 662 663 664 665 666 667
                    vars[var_name]
                ).process_mesh = changed_process_mesh

    def search_once(
        self,
        program,
        valid_dist_attr_dict,
        dist_context,
        pipeline_process_meshes=None,
    ):
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        raw_ops = program.global_block().ops
        ops = []
        for op in raw_ops:
            if op.type not in PlanSpace.not_enum_ops:
                ops.append(op)
        assert ops, "The ops of program have no distributed attributes."
        vars = program.global_block().vars
        new_dist_context = copy.deepcopy(dist_context)
        new_dist_context._dist_op_context = DistributedOperatorContext()
        new_valid_dist_attr_dict = None
        random_selected_op_idx = np.random.randint(len(ops))
        selected_op = ops[random_selected_op_idx]
        op_valid_dist_attr_list = valid_dist_attr_dict[selected_op.desc.id()][0]
        pipeline_stage = valid_dist_attr_dict[selected_op.desc.id()][1]
        random_selected_dist_attr_idx = np.random.randint(
683 684
            len(op_valid_dist_attr_list)
        )
685
        selected_op_dist_attr = copy.deepcopy(
686 687
            op_valid_dist_attr_list[random_selected_dist_attr_idx]
        )
688 689 690 691 692 693 694 695 696 697

        start_idx = ops[0].desc.id()
        if pipeline_stage > -1:
            # in pipeline mode, the above phase just select a dims mapping
            # 0 represents not changed, 1 represents to be the same with before stage, 2 represents to be the same with the latter stage
            new_valid_dist_attr_dict = copy.deepcopy(valid_dist_attr_dict)
            changed_mode = np.random.randint(3)
            if changed_mode == 0:
                # not change the process mesh, just change dims mapping
                new_dist_context.set_op_dist_attr_for_program(
698 699 700 701 702
                    selected_op, selected_op_dist_attr
                )
                self.set_tensor_dist_attr(
                    selected_op, selected_op_dist_attr, vars, new_dist_context
                )
703 704 705

            elif changed_mode == 1:
                changed_stage = pipeline_stage - 1
706 707 708 709 710 711 712 713 714 715 716
                if (
                    changed_stage == -1
                    or random_selected_op_idx == len(ops) - 1
                    or (
                        random_selected_op_idx + 1 == len(ops) - 1
                        and new_valid_dist_attr_dict[
                            ops[random_selected_op_idx + 1].desc.id()
                        ][1]
                        == pipeline_stage + 1
                    )
                ):
717
                    new_dist_context.set_op_dist_attr_for_program(
718 719 720 721 722 723 724 725
                        selected_op, selected_op_dist_attr
                    )
                    self.set_tensor_dist_attr(
                        selected_op,
                        selected_op_dist_attr,
                        vars,
                        new_dist_context,
                    )
726 727 728

                else:
                    selected_op_process_mesh = pipeline_process_meshes[
729 730
                        pipeline_stage
                    ]
731
                    next_op_id = ops[random_selected_op_idx + 1].desc.id()
732 733 734 735 736
                    if (
                        new_valid_dist_attr_dict[next_op_id][1]
                        == pipeline_stage + 1
                        and random_selected_op_idx + 1 != len(ops) - 1
                    ):
737 738
                        new_valid_dist_attr_dict[next_op_id][1] = pipeline_stage
                        for op_dist_attr in new_valid_dist_attr_dict[
739 740
                            next_op_id
                        ][0]:
741 742 743 744
                            op_dist_attr.process_mesh = selected_op_process_mesh
                        # set next op dist attr in the discontext and output/input tensor process mesh
                        self.change_process_mesh(
                            ops[random_selected_op_idx + 1],
745 746 747 748
                            selected_op_process_mesh,
                            vars,
                            new_dist_context,
                        )
749 750

                    # change the selected op stage and output dist attr
751 752 753
                    new_valid_dist_attr_dict[selected_op.desc.id()][
                        1
                    ] = changed_stage
754 755 756
                    new_process_mesh = pipeline_process_meshes[changed_stage]
                    selected_op_dist_attr.process_mesh = new_process_mesh
                    for op_dist_attr in new_valid_dist_attr_dict[
757 758
                        selected_op.desc.id()
                    ][0]:
759 760
                        op_dist_attr.process_mesh = new_process_mesh
                    new_dist_context.set_op_dist_attr_for_program(
761 762
                        selected_op, selected_op_dist_attr
                    )
763

764 765 766 767 768 769
                    self.set_tensor_dist_attr(
                        selected_op,
                        selected_op_dist_attr,
                        vars,
                        new_dist_context,
                    )
770 771 772 773

                    # change the pre op stage
                    for idx in range(random_selected_op_idx - 1, -1, -1):
                        stage = new_valid_dist_attr_dict[ops[idx].desc.id()][1]
774
                        valid_dist_attr_list = new_valid_dist_attr_dict[
775 776
                            ops[idx].desc.id()
                        ][0]
777
                        new_process_mesh = pipeline_process_meshes[
778 779
                            changed_stage
                        ]
780
                        if stage == changed_stage + 1:
781 782 783
                            new_valid_dist_attr_dict[ops[idx].desc.id()][
                                1
                            ] = changed_stage
784 785
                            for op_dist_attr in valid_dist_attr_list:
                                op_dist_attr.process_mesh = new_process_mesh
786
                            new_dist_context.get_op_dist_attr_for_program(
787 788
                                ops[idx]
                            ).process_mesh = new_process_mesh
789
                            # change process mesh of the output and input tensor
790 791 792 793 794 795
                            self.change_process_mesh(
                                ops[idx],
                                new_process_mesh,
                                vars,
                                new_dist_context,
                            )
796 797 798 799 800
                        else:
                            break

            else:
                changed_stage = pipeline_stage + 1
801 802 803 804 805 806 807 808 809 810 811
                if (
                    changed_stage == len(pipeline_process_meshes)
                    or random_selected_op_idx == 0
                    or (
                        new_valid_dist_attr_dict[
                            ops[random_selected_op_idx - 1].desc.id()
                        ][1]
                        == pipeline_stage - 1
                        and (random_selected_op_idx == 1)
                    )
                ):
812
                    new_dist_context.set_op_dist_attr_for_program(
813 814 815 816 817 818 819 820
                        selected_op, selected_op_dist_attr
                    )
                    self.set_tensor_dist_attr(
                        selected_op,
                        selected_op_dist_attr,
                        vars,
                        new_dist_context,
                    )
821 822 823

                else:
                    selected_op_process_mesh = pipeline_process_meshes[
824 825
                        pipeline_stage
                    ]
826
                    pre_op_id = ops[random_selected_op_idx - 1].desc.id()
827 828 829 830 831
                    if (
                        new_valid_dist_attr_dict[pre_op_id][1]
                        == pipeline_stage - 1
                        and random_selected_op_idx != 1
                    ):
832 833
                        new_valid_dist_attr_dict[pre_op_id][1] = pipeline_stage
                        for op_dist_attr in new_valid_dist_attr_dict[pre_op_id][
834 835
                            0
                        ]:
836 837 838 839
                            op_dist_attr.process_mesh = selected_op_process_mesh
                        # set pre op dist attr in the discontext and output tensor process mesh
                        self.change_process_mesh(
                            ops[random_selected_op_idx - 1],
840 841 842 843
                            selected_op_process_mesh,
                            vars,
                            new_dist_context,
                        )
844 845

                    # change the selected op stage and output tensor dist attr
846 847 848
                    new_valid_dist_attr_dict[selected_op.desc.id()][
                        1
                    ] = changed_stage
849 850 851
                    new_process_mesh = pipeline_process_meshes[changed_stage]
                    selected_op_dist_attr.process_mesh = new_process_mesh
                    for op_dist_attr in new_valid_dist_attr_dict[
852 853
                        selected_op.desc.id()
                    ][0]:
854 855
                        op_dist_attr.process_mesh = new_process_mesh
                    new_dist_context.set_op_dist_attr_for_program(
856 857 858 859 860 861 862 863
                        selected_op, selected_op_dist_attr
                    )
                    self.set_tensor_dist_attr(
                        selected_op,
                        selected_op_dist_attr,
                        vars,
                        new_dist_context,
                    )
864 865 866 867

                    # change the next op stage
                    for idx in range(random_selected_op_idx + 1, len(ops)):
                        stage = new_valid_dist_attr_dict[ops[idx].desc.id()][1]
868
                        valid_dist_attr_list = new_valid_dist_attr_dict[
869 870
                            ops[idx].desc.id()
                        ][0]
871
                        new_process_mesh = pipeline_process_meshes[
872 873
                            changed_stage
                        ]
874
                        if stage == changed_stage - 1:
875 876 877
                            new_valid_dist_attr_dict[ops[idx].desc.id()][
                                1
                            ] = changed_stage
878 879 880
                            for op_dist_attr in valid_dist_attr_list:
                                op_dist_attr.process_mesh = new_process_mesh

881
                            new_dist_context.get_op_dist_attr_for_program(
882 883
                                ops[idx]
                            ).process_mesh = new_process_mesh
884
                            # change the output tensor dist attr
885 886 887 888 889 890
                            self.change_process_mesh(
                                ops[idx],
                                new_process_mesh,
                                vars,
                                new_dist_context,
                            )
891 892 893
                        else:
                            break
        else:
894
            new_dist_context.set_op_dist_attr_for_program(
895 896 897 898 899
                selected_op, selected_op_dist_attr
            )
            self.set_tensor_dist_attr(
                selected_op, selected_op_dist_attr, vars, new_dist_context
            )
900 901 902 903

        for op in ops:
            # make softmax_with_cross_entropy unshard
            if op.type == "softmax_with_cross_entropy":
904 905 906
                self.make_special_op_unshard(
                    op, ops, vars, new_dist_context, valid_dist_attr_dict
                )
907 908 909 910 911 912 913
                break

        if new_valid_dist_attr_dict is None:
            return valid_dist_attr_dict, new_dist_context
        else:
            return new_valid_dist_attr_dict, new_dist_context

914 915 916 917 918 919
    def _search_core(
        self,
        valid_dist_attr_dict,
        init_dist_context,
        pipeline_process_meshes=None,
    ):
920 921 922
        times = 0
        best_dist_context = init_dist_context
        cost = self.estimate_searched_strategy_cost(
923 924
            init_dist_context, pipeline_process_meshes
        ).runtime
925 926 927 928
        min_cost = cost
        while times < self.max_search_times:
            times += 1
            new_dist_context = self.search_once(
929 930 931 932 933
                self.serial_program_info.train_program,
                valid_dist_attr_dict,
                best_dist_context,
                pipeline_process_meshes,
            )[1]
934
            cur_cost = self.estimate_searched_strategy_cost(
935 936
                new_dist_context, pipeline_process_meshes
            ).runtime
937 938 939 940 941 942 943
            if (min_cost - cur_cost) > 0:
                best_dist_context = copy.deepcopy(new_dist_context)
                min_cost = cur_cost
                times = 0
        return best_dist_context, min_cost

    def search(self):
C
caozhou 已提交
944
        print("Start MCMC searching.")
945 946 947
        start_time = time.time()
        train_program = self.serial_program_info.train_program
        cluster = self.serial_program_info.cluster
948 949 950 951 952
        processes = (
            paddle.distributed.get_world_size()
            if cluster is None
            else len(cluster.get_all_devices("GPU"))
        )
953 954 955
        assert processes > 0, "Get process failed."

        process_mesh_topology_list = PlanSpace.enum_process_mesh_topology(
956 957
            processes
        )
958 959 960 961 962 963
        searched_dist_context = None
        min_cost = None

        searched_pipeline_dist_context = None
        pipeline_min_cost = None
        for process_mesh_topology in process_mesh_topology_list:
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
            print(
                "MCMC search: search process mesh {} with pipeline mode.".format(
                    process_mesh_topology
                )
            )
            (
                valid_dist_attr_dict,
                pipeline_process_meshes,
                global_process_mesh,
            ) = PlanSpace.enum_valid_dist_attr_for_program(
                train_program, process_mesh_topology, True
            )
            init_dist_context = self.init_program(
                valid_dist_attr_dict,
                train_program,
                pipeline_process_meshes,
                global_process_mesh,
            )
982
            best_dist_context, cost = self._search_core(
983 984
                valid_dist_attr_dict, init_dist_context, pipeline_process_meshes
            )
C
caozhou 已提交
985
            print(
986 987 988 989
                "MCMC search: the min cost is {} in the process mesh {} with pipeline mode.".format(
                    cost, process_mesh_topology
                )
            )
990
            best_dist_context._dist_op_context = DistributedOperatorContext()
991 992 993 994 995 996 997 998
            pipeline_min_cost = (
                cost if pipeline_min_cost is None else pipeline_min_cost
            )
            searched_pipeline_dist_context = (
                best_dist_context
                if searched_pipeline_dist_context is None
                else searched_pipeline_dist_context
            )
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
            if pipeline_min_cost > cost:
                searched_pipeline_dist_context = best_dist_context
                pipeline_min_cost = cost

        searched_non_pipeline_dist_context = None
        non_pipeline_min_cost = None
        for process_mesh_topology in process_mesh_topology_list:
            # if process_mesh_topology shape is 3, include pipeline mode by default
            if len(process_mesh_topology) == 3:
                continue
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
            print(
                "MCMC search: search process mesh {} without pipeline mode.".format(
                    process_mesh_topology
                )
            )
            (
                valid_dist_attr_dict,
                pipeline_process_meshes,
                global_process_mesh,
            ) = PlanSpace.enum_valid_dist_attr_for_program(
                train_program, process_mesh_topology, False
            )
            init_dist_context = self.init_program(
                valid_dist_attr_dict,
                train_program,
                pipeline_process_meshes,
                global_process_mesh,
            )
1027
            best_dist_context, cost = self._search_core(
1028 1029
                valid_dist_attr_dict, init_dist_context, pipeline_process_meshes
            )
C
caozhou 已提交
1030
            print(
1031 1032 1033 1034
                "MCMC search: the min cost is {} in the process mesh {} without pipeline mode.".format(
                    cost, process_mesh_topology
                )
            )
1035
            best_dist_context._dist_op_context = DistributedOperatorContext()
1036 1037 1038 1039 1040 1041 1042 1043
            non_pipeline_min_cost = (
                cost if non_pipeline_min_cost is None else non_pipeline_min_cost
            )
            searched_non_pipeline_dist_context = (
                best_dist_context
                if searched_non_pipeline_dist_context is None
                else searched_non_pipeline_dist_context
            )
1044 1045 1046 1047 1048 1049 1050
            if non_pipeline_min_cost > cost:
                searched_non_pipeline_dist_context = best_dist_context
                non_pipeline_min_cost = cost

        if non_pipeline_min_cost > pipeline_min_cost:
            searched_dist_context = searched_pipeline_dist_context
            min_cost = pipeline_min_cost
C
caozhou 已提交
1051
            print(
1052 1053 1054 1055 1056 1057 1058 1059 1060
                "Better set FLAGS_benchmark=1 to avoid hang problem in the pipeline mode."
            )
        else:
            searched_dist_context = searched_non_pipeline_dist_context
            min_cost = non_pipeline_min_cost

        # rebuild g_process_group
        pg0 = get_process_group(0)
        for process_mesh in searched_dist_context._process_meshes:
1061
            pg0.add_ranks(process_mesh.process_ids)
1062
        end_time = time.time()
C
caozhou 已提交
1063
        print(
1064 1065 1066 1067
            "End MCMC searching: the min cost is {} and the search time is {}s.".format(
                min_cost, end_time - start_time
            )
        )
1068 1069 1070 1071
        return searched_dist_context, min_cost


class Planner:
1072 1073 1074
    def __init__(
        self, serial_program_info, parallelizer, algorithm_config=None
    ):
1075
        self._serial_program_info = serial_program_info
1076
        self._parallelizer = parallelizer
1077 1078
        self._algorithm_config = algorithm_config
        self._algorithm_searcher = self.create_algorithm_searcher(
1079 1080
            algorithm_config
        )
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

    @property
    def serial_program_info(self):
        return self._serial_program_info

    @property
    def algorithm_config(self):
        return self._algorithm_config

    @property
    def algorithm_searcher(self):
        return self._algorithm_searcher

1094 1095 1096 1097
    @property
    def parallelizer(self):
        return self._parallelizer

1098 1099 1100 1101 1102 1103 1104 1105
    def create_algorithm_searcher(self, algorithm_config):
        name = algorithm_config.get("name", None)
        assert name is not None, "Invalid algorithm config."

        algorithm_searcher = None
        if name == "mcmc":
            # NOTE: Only GPU clusters are supported now.
            max_search_times = algorithm_config.get("max_search_times", None)
1106 1107 1108 1109 1110 1111 1112 1113 1114
            algorithm_searcher = (
                MCMC(
                    self.serial_program_info,
                    self.parallelizer,
                    max_search_times,
                )
                if max_search_times is not None
                else MCMC(self.serial_program_info, self.parallelizer)
            )
1115 1116
        else:
            raise NotImplementedError(
1117 1118
                "Other search algorithms have not been supported now."
            )
1119 1120 1121 1122 1123

        return algorithm_searcher

    def search(self):
        return self.algorithm_searcher.search()