run_program_op_func.h 5.1 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <vector>

#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/eager_tensor.h"
#include "paddle/fluid/eager/to_static/run_program_op_node.h"
#include "paddle/fluid/eager/utils.h"

24 25 26
// Filter params without grads in global block. In this case, we will
// tag its AutogradMeta with stop_gradient = True to avoid fault from
// reducer while training on multi-cards.
27 28 29 30
static void clear_no_grad_edges(const std::vector<paddle::Tensor>& params,
                                const paddle::framework::BlockDesc* block_desc,
                                egr::GradNodeBase* grad_node,
                                size_t slot_id) {
31 32 33
  for (size_t i = 0; i < params.size(); ++i) {
    auto p_grad_name = paddle::framework::GradVarName(params[i].name());
    if (!block_desc->HasVar(p_grad_name)) {
L
Leo Chen 已提交
34
      VLOG(3) << "clear edge of " << p_grad_name;
35 36 37 38 39
      grad_node->MutableOutputMeta()[slot_id][i].GetMutableEdge().Clear();
    }
  }
}

40
static void clear_no_grad_edges_with_partial_block(
41
    const std::vector<paddle::Tensor>& params,
42 43 44 45 46 47 48 49
    const paddle::framework::BlockDesc* forward_block_desc,
    const paddle::framework::BlockDesc* backward_block_desc,
    egr::GradNodeBase* grad_node,
    size_t slot_id) {
  for (size_t i = 0; i < params.size(); ++i) {
    auto p_grad_name = paddle::framework::GradVarName(params[i].name());
    if (!forward_block_desc->HasVar(p_grad_name) &&
        !backward_block_desc->HasVar(p_grad_name)) {
L
Leo Chen 已提交
50
      VLOG(3) << "clear edge of " << p_grad_name;
51 52 53 54 55
      grad_node->MutableOutputMeta()[slot_id][i].GetMutableEdge().Clear();
    }
  }
}

J
Jiabin Yang 已提交
56
inline void run_program_ad_func(
57 58 59
    const std::vector<paddle::Tensor>& x,
    const std::vector<paddle::Tensor>& params,
    std::vector<paddle::Tensor*>& out,                   // NOLINT
0
0x45f 已提交
60
    std::vector<paddle::framework::Scope*>& step_scope,  // NOLINT
61
    std::vector<paddle::Tensor*>& dout,                  // NOLINT
0
0x45f 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    const paddle::framework::AttributeMap& attrs) {
  VLOG(2) << "start run run_program";
  // Call forward function
  RunProgramAPI(x, params, out, step_scope, dout, attrs);
  VLOG(2) << "start run run_program grad";

  // Prepare Autograd Meta
  auto deref_out = details::DereferenceTensors(out);
  std::vector<egr::AutogradMeta*> p_autograd_x =
      egr::EagerUtils::nullable_autograd_meta(x);
  std::vector<egr::AutogradMeta*> p_autograd_params =
      egr::EagerUtils::nullable_autograd_meta(params);
  std::vector<egr::AutogradMeta*> p_autograd_outs =
      egr::EagerUtils::nullable_autograd_meta(deref_out);

  bool trace_backward = egr::Controller::Instance().HasGrad();
  bool require_any_grad = egr::EagerUtils::ComputeRequireGrad(
      trace_backward, &p_autograd_x, &p_autograd_params);

  if (require_any_grad) {
    egr::EagerUtils::PassStopGradient(false, &p_autograd_outs);
    // Create GradOpNode (1 means [out_grad], 2 means [x_grad, paramx_grad])
    auto grad_node = std::make_shared<GradNodeRunProgram>(1, 2);

    // Set Attributes
    grad_node->SetAttrMap(attrs);
    // Set TensorWrappers
    grad_node->SetFwdX(x);
90

0
0x45f 已提交
91 92 93 94
    grad_node->SetFwdParams(params);
    grad_node->SetStepScope(step_scope);

    // Set Grad out rank as same as fwd input and set stop gradient to bwd
95 96 97 98 99 100 101
    // NOTE(@xiongkun): Not every tensor in x(list of tensor) is required
    // gradient. for example: x[1] is not used for output, the x[1] is ignored.

    auto* forward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc*, attrs.at("forward_global_block"));
    auto* backward_global_block = PADDLE_GET_CONST(
        paddle::framework::BlockDesc*, attrs.at("backward_global_block"));
102
    std::vector<const paddle::Tensor*> x_require_grad;
103 104 105 106 107 108 109 110 111
    for (size_t i = 0; i < x.size(); ++i) {
      auto& name = x[i].name();
      if (forward_global_block->HasVar(name) ||
          backward_global_block->HasVar(name)) {
        x_require_grad.push_back(&x[i]);
      }
    }

    grad_node->SetGradOutMeta(x_require_grad, /*slot id*/ 0);
112
    grad_node->SetGradOutMeta(params, /*slot id*/ 1);
113 114

    VLOG(2) << "clear_no_grad_edges.";
115 116 117 118 119
    clear_no_grad_edges_with_partial_block(params,
                                           forward_global_block,
                                           backward_global_block,
                                           grad_node.get(),
                                           /*slot id*/ 1);
0
0x45f 已提交
120

121
    grad_node->SetGradInMeta(deref_out, 0);
0
0x45f 已提交
122 123 124 125 126 127 128

    egr::EagerUtils::SetOutRankWithSlot(&p_autograd_outs, 0);

    // Set History for output set current Grad Node for
    egr::EagerUtils::SetHistory(&p_autograd_outs, grad_node);
  }
}