test_graph_khop_sampler.py 9.0 KB
Newer Older
S
Siming Dai 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid


class TestGraphKhopSampler(unittest.TestCase):
    def setUp(self):
        num_nodes = 20
        edges = np.random.randint(num_nodes, size=(100, 2))
        edges = np.unique(edges, axis=0)
        edges_id = np.arange(0, len(edges))
        sorted_edges = edges[np.argsort(edges[:, 1])]
        sorted_eid = edges_id[np.argsort(edges[:, 1])]

        # Calculate dst index cumsum counts.
        dst_count = np.zeros(num_nodes)
        dst_src_dict = {}
        for dst in range(0, num_nodes):
            true_index = sorted_edges[:, 1] == dst
            dst_count[dst] = np.sum(true_index)
            dst_src_dict[dst] = sorted_edges[:, 0][true_index]
        dst_count = dst_count.astype("int64")
        colptr = np.cumsum(dst_count)
        colptr = np.insert(colptr, 0, 0)

        self.row = sorted_edges[:, 0].astype("int64")
        self.colptr = colptr.astype("int64")
        self.sorted_eid = sorted_eid.astype("int64")
        self.nodes = np.unique(np.random.randint(
            num_nodes, size=5)).astype("int64")
        self.sample_sizes = [5, 5]
        self.dst_src_dict = dst_src_dict

    def test_sample_result(self):
        paddle.disable_static()
        row = paddle.to_tensor(self.row)
        colptr = paddle.to_tensor(self.colptr)
        nodes = paddle.to_tensor(self.nodes)

        edge_src, edge_dst, sample_index, reindex_nodes = \
            paddle.incubate.graph_khop_sampler(row, colptr,
                                                   nodes, self.sample_sizes,
                                                   return_eids=False)
        # Reindex edge_src and edge_dst to original index.
        edge_src = edge_src.reshape([-1])
        edge_dst = edge_dst.reshape([-1])
        sample_index = sample_index.reshape([-1])

        for i in range(len(edge_src)):
            edge_src[i] = sample_index[edge_src[i]]
            edge_dst[i] = sample_index[edge_dst[i]]

        for n in self.nodes:
            edge_src_n = edge_src[edge_dst == n]
            if edge_src_n.shape[0] == 0:
                continue
            # Ensure no repetitive sample neighbors.
            self.assertTrue(
                edge_src_n.shape[0] == paddle.unique(edge_src_n).shape[0])
            # Ensure the correct sample size.
            self.assertTrue(edge_src_n.shape[0] == self.sample_sizes[0] or
                            edge_src_n.shape[0] == len(self.dst_src_dict[n]))
            in_neighbors = np.isin(edge_src_n.numpy(), self.dst_src_dict[n])
            # Ensure the correct sample neighbors.
            self.assertTrue(np.sum(in_neighbors) == in_neighbors.shape[0])

    def test_uva_sample_result(self):
        paddle.disable_static()
        if paddle.fluid.core.is_compiled_with_cuda():
            row = paddle.fluid.core.to_uva_tensor(
                self.row.astype(self.row.dtype))
            sorted_eid = paddle.fluid.core.to_uva_tensor(
                self.sorted_eid.astype(self.sorted_eid.dtype))
            colptr = paddle.to_tensor(self.colptr)
            nodes = paddle.to_tensor(self.nodes)

            edge_src, edge_dst, sample_index, reindex_nodes, edge_eids = \
                paddle.incubate.graph_khop_sampler(row, colptr,
                                                       nodes, self.sample_sizes,
                                                       sorted_eids=sorted_eid,
                                                       return_eids=True)
            edge_src = edge_src.reshape([-1])
            edge_dst = edge_dst.reshape([-1])
            sample_index = sample_index.reshape([-1])

            for i in range(len(edge_src)):
                edge_src[i] = sample_index[edge_src[i]]
                edge_dst[i] = sample_index[edge_dst[i]]

            for n in self.nodes:
                edge_src_n = edge_src[edge_dst == n]
                if edge_src_n.shape[0] == 0:
                    continue
                self.assertTrue(
                    edge_src_n.shape[0] == paddle.unique(edge_src_n).shape[0])
                self.assertTrue(
                    edge_src_n.shape[0] == self.sample_sizes[0] or
                    edge_src_n.shape[0] == len(self.dst_src_dict[n]))
                in_neighbors = np.isin(edge_src_n.numpy(), self.dst_src_dict[n])
                self.assertTrue(np.sum(in_neighbors) == in_neighbors.shape[0])

    def test_sample_result_static_with_eids(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            row = paddle.static.data(
                name="row", shape=self.row.shape, dtype=self.row.dtype)
            sorted_eids = paddle.static.data(
                name="eids",
                shape=self.sorted_eid.shape,
                dtype=self.sorted_eid.dtype)
            colptr = paddle.static.data(
                name="colptr", shape=self.colptr.shape, dtype=self.colptr.dtype)
            nodes = paddle.static.data(
                name="nodes", shape=self.nodes.shape, dtype=self.nodes.dtype)

            edge_src, edge_dst, sample_index, reindex_nodes, edge_eids = \
                paddle.incubate.graph_khop_sampler(row, colptr,
                                                       nodes, self.sample_sizes,
                                                       sorted_eids, True)
            exe = paddle.static.Executor(paddle.CPUPlace())
            ret = exe.run(feed={
                'row': self.row,
                'eids': self.sorted_eid,
                'colptr': self.colptr,
                'nodes': self.nodes
            },
                          fetch_list=[edge_src, edge_dst, sample_index])

            edge_src, edge_dst, sample_index = ret
            edge_src = edge_src.reshape([-1])
            edge_dst = edge_dst.reshape([-1])
            sample_index = sample_index.reshape([-1])

            for i in range(len(edge_src)):
                edge_src[i] = sample_index[edge_src[i]]
                edge_dst[i] = sample_index[edge_dst[i]]

            for n in self.nodes:
                edge_src_n = edge_src[edge_dst == n]
                if edge_src_n.shape[0] == 0:
                    continue
                self.assertTrue(
                    edge_src_n.shape[0] == np.unique(edge_src_n).shape[0])
                self.assertTrue(
                    edge_src_n.shape[0] == self.sample_sizes[0] or
                    edge_src_n.shape[0] == len(self.dst_src_dict[n]))
                in_neighbors = np.isin(edge_src_n, self.dst_src_dict[n])
                self.assertTrue(np.sum(in_neighbors) == in_neighbors.shape[0])

    def test_sample_result_static_without_eids(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            row = paddle.static.data(
                name="row", shape=self.row.shape, dtype=self.row.dtype)
            colptr = paddle.static.data(
                name="colptr", shape=self.colptr.shape, dtype=self.colptr.dtype)
            nodes = paddle.static.data(
                name="nodes", shape=self.nodes.shape, dtype=self.nodes.dtype)
            edge_src, edge_dst, sample_index, reindex_nodes = \
                paddle.incubate.graph_khop_sampler(row, colptr,
                                                       nodes, self.sample_sizes)
            exe = paddle.static.Executor(paddle.CPUPlace())
            ret = exe.run(feed={
                'row': self.row,
                'colptr': self.colptr,
                'nodes': self.nodes
            },
                          fetch_list=[edge_src, edge_dst, sample_index])
            edge_src, edge_dst, sample_index = ret
            edge_src = edge_src.reshape([-1])
            edge_dst = edge_dst.reshape([-1])
            sample_index = sample_index.reshape([-1])

            for i in range(len(edge_src)):
                edge_src[i] = sample_index[edge_src[i]]
                edge_dst[i] = sample_index[edge_dst[i]]

            for n in self.nodes:
                edge_src_n = edge_src[edge_dst == n]
                if edge_src_n.shape[0] == 0:
                    continue
                self.assertTrue(
                    edge_src_n.shape[0] == np.unique(edge_src_n).shape[0])
                self.assertTrue(
                    edge_src_n.shape[0] == self.sample_sizes[0] or
                    edge_src_n.shape[0] == len(self.dst_src_dict[n]))
                in_neighbors = np.isin(edge_src_n, self.dst_src_dict[n])
                self.assertTrue(np.sum(in_neighbors) == in_neighbors.shape[0])


if __name__ == "__main__":
    unittest.main()