test_unbind_op.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18
import numpy as np
from op_test import OpTest, convert_float_to_uint16
19

20 21 22
import paddle
import paddle.fluid as fluid
import paddle.tensor as tensor
23
from paddle.fluid import Program, program_guard
24 25 26 27 28 29 30 31 32 33 34


class TestUnbind(unittest.TestCase):
    def test_unbind(self):

        x_1 = fluid.data(shape=[2, 3], dtype='float32', name='x_1')
        [out_0, out_1] = tensor.unbind(input=x_1, axis=0)
        input_1 = np.random.random([2, 3]).astype("float32")
        axis = fluid.data(shape=[1], dtype='int32', name='axis')
        exe = fluid.Executor(place=fluid.CPUPlace())

35 36 37 38 39
        [res_1, res_2] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1, "axis": 0},
            fetch_list=[out_0, out_1],
        )
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

        assert np.array_equal(res_1, input_1[0, 0:100])
        assert np.array_equal(res_2, input_1[1, 0:100])

    def test_unbind_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.random.random([2, 3]).astype("float32")
            x = paddle.to_tensor(np_x)
            x.stop_gradient = False
            [res_1, res_2] = paddle.unbind(x, 0)
            np.testing.assert_array_equal(res_1, np_x[0, 0:100])
            np.testing.assert_array_equal(res_2, np_x[1, 0:100])

            out = paddle.add_n([res_1, res_2])

            np_grad = np.ones(x.shape, np.float32)
            out.backward()
            np.testing.assert_array_equal(x.grad.numpy(), np_grad)


class TestLayersUnbind(unittest.TestCase):
    def test_layers_unbind(self):

        x_1 = fluid.data(shape=[2, 3], dtype='float32', name='x_1')
64
        [out_0, out_1] = paddle.unbind(input=x_1, axis=0)
65 66 67 68
        input_1 = np.random.random([2, 3]).astype("float32")
        axis = fluid.data(shape=[1], dtype='int32', name='axis')
        exe = fluid.Executor(place=fluid.CPUPlace())

69 70 71 72 73
        [res_1, res_2] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_1, "axis": 0},
            fetch_list=[out_0, out_1],
        )
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

        assert np.array_equal(res_1, input_1[0, 0:100])
        assert np.array_equal(res_2, input_1[1, 0:100])


class TestUnbindOp(OpTest):
    def initParameters(self):
        pass

    def outReshape(self):
        pass

    def setAxis(self):
        pass

    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.axis = 0
        self.num = 3
        self.initParameters()
        x = np.arange(12).reshape(3, 2, 2).astype(self.dtype)
        self.out = np.split(x, self.num, self.axis)
        self.outReshape()
        self.inputs = {'X': x}
        self.attrs = {'axis': self.axis}
        self.setAxis()
101 102 103
        self.outputs = {
            'Out': [('out%d' % i, self.out[i]) for i in range(len(self.out))]
        }
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

    def get_dtype(self):
        return "float64"

    def _set_op_type(self):
        self.op_type = "unbind"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestUnbindOp1(TestUnbindOp):
    def initParameters(self):
        self.axis = 1
        self.num = 2

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindOp2(TestUnbindOp):
    def initParameters(self):
        self.axis = 2
        self.num = 2

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindOp3(TestUnbindOp):
    def initParameters(self):
        self.axis = 2
        self.num = 2

    def setAxis(self):
        self.attrs = {'axis': -1}

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindOp4(TestUnbindOp):
    def initParameters(self):
        self.axis = 1
        self.num = 2

    def setAxis(self):
        self.attrs = {'axis': -2}

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindBF16Op(OpTest):
    def setUp(self):
        self._set_op_type()
        self.python_api = paddle.unbind
        self.dtype = self.get_dtype()
        self.axis = 0
        self.num = 3
        x = np.arange(12).reshape(3, 2, 2).astype(self.dtype)
        self.out = np.split(x, self.num, self.axis)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'axis': self.axis}
187 188 189 190 191 192
        self.outputs = {
            'Out': [
                ('out%d' % i, convert_float_to_uint16(self.out[i]))
                for i in range(len(self.out))
            ]
        }
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

    def get_dtype(self):
        return np.uint16

    def _set_op_type(self):
        self.op_type = "unbind"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        pass


class TestUnbindAxisError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            x = fluid.data(shape=[2, 3], dtype='float32', name='x')

            def test_table_Variable():
                tensor.unbind(input=x, axis=2.0)

            self.assertRaises(TypeError, test_table_Variable)


if __name__ == '__main__':
    unittest.main()