trainer.py 18.5 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import os
17

Y
Yu Yang 已提交
18
import core
19

Y
Yu Yang 已提交
20
import data_feeder
21 22
import executor
import framework
J
Jeff Wang 已提交
23
import io
Y
Yu Yang 已提交
24 25
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
26
import parallel_executor
Y
Yancey 已提交
27
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
28

H
Helin Wang 已提交
29
__all__ = [
30 31
    'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
    'EndStepEvent', 'CheckpointConfig'
H
Helin Wang 已提交
32 33 34
]


Y
Yu Yang 已提交
35 36 37 38 39 40 41 42
class BeginEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
43

Y
Yu Yang 已提交
44 45 46 47 48

class BeginStepEvent(object):
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
49
        self.fetch_metrics = True
Y
Yu Yang 已提交
50 51 52


class EndStepEvent(object):
Y
yuyang18 已提交
53
    def __init__(self, epoch_id, step_id, metrics):
Y
Yu Yang 已提交
54 55
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
56
        self.metrics = metrics
H
Helin Wang 已提交
57 58


59 60 61 62
class CheckpointConfig(object):
    def __init__(self,
                 checkpoint_dir=None,
                 max_num_checkpoints=3,
T
tangwei12 已提交
63 64 65
                 epoch_interval=1,
                 step_interval=10):

66 67
        assert epoch_interval >= 1
        assert step_interval >= 1
68

69 70 71 72 73
        self.checkpoint_dir = checkpoint_dir if checkpoint_dir is not None else os.getcwd(
        )
        self.max_num_checkpoints = max_num_checkpoints
        self.epoch_interval = epoch_interval
        self.step_interval = step_interval
74 75
        self.epoch_id = 0
        self.step_id = 0
T
tangwei12 已提交
76
        self.load_serial = None
T
tangwei12 已提交
77 78
        self.pserver_id = -1,
        self.lookup_table_name = None
T
tangwei12 已提交
79

80

Q
Qiao Longfei 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
107
class Trainer(object):
Y
Yu Yang 已提交
108 109 110
    """

    Args:
Q
Qiao Longfei 已提交
111
        train_func(callable): A function which will return loss. The loss must be a scalar.
112
        optimizer_func(callable): A function that returns an Optimizer object.
Y
Yu Yang 已提交
113 114 115
        place: The device place of this trainer.
    """

Q
Qiao Longfei 已提交
116 117
    def __init__(self,
                 train_func,
118
                 optimizer_func,
T
tangwei12 已提交
119
                 param_path=None,
Y
yuyang18 已提交
120
                 place=None,
121 122
                 parallel=False,
                 checkpoint_config=None):
123
        self.__stop = False
Y
yuyang18 已提交
124
        self.parallel = parallel
H
Helin Wang 已提交
125
        # 1. we need to generate a framework.Program by calling
H
Helin Wang 已提交
126
        # program_func. Reference: fluid.program_guard in
H
Helin Wang 已提交
127
        # test_word2vec.py
Q
Qiao Longfei 已提交
128

129 130
        # config for checkpoint
        # only chief worker will save variables
T
tangwei12 已提交
131
        self.trainer_id = 0
T
tangwei12 已提交
132 133 134
        self.checkpoint_cfg = checkpoint_config
        if self.checkpoint_cfg:
            assert isinstance(self.checkpoint_cfg, CheckpointConfig)
T
tangwei12 已提交
135
            serial = io.get_latest_checkpoint_serial(
T
tangwei12 已提交
136 137
                self.checkpoint_cfg.checkpoint_dir)
            self.checkpoint_cfg.load_serial = serial if serial >= 0 else None
138

H
Helin Wang 已提交
139
        self.scope = core.Scope()
Y
Yu Yang 已提交
140 141 142 143 144

        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
145
            program_func_outs = train_func()
Y
yuyang18 已提交
146
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
147
                program_func_outs, list) else [program_func_outs]
148
            self.test_program = self.train_program.clone(for_test=True)
149

150
            # The first element of program_func_outs is loss.
151 152 153
            loss = self.train_func_outputs[0]

            optimizer = optimizer_func()
Y
Yu Yang 已提交
154 155 156
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
157
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
158

Q
Qiao Longfei 已提交
159
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
160

Q
Qiao Longfei 已提交
161
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
162

H
Helin Wang 已提交
163 164
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
165
        # Run startup program
166 167 168
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
169

T
tangwei12 已提交
170
        if self.checkpoint_cfg and self.checkpoint_cfg.load_serial:
T
bug fix  
tangwei12 已提交
171 172
            with self._prog_and_scope_guard():
                exe = executor.Executor(place)
T
tangwei12 已提交
173 174
                io.load_checkpoint(exe, self.checkpoint_cfg.checkpoint_dir,
                                   self.checkpoint_cfg.load_serial,
T
bug fix  
tangwei12 已提交
175
                                   self.startup_program)
Y
Yu Yang 已提交
176

T
tangwei12 已提交
177
                if self.checkpoint_cfg.pserver_id != -1:
178 179 180 181 182 183 184
                    epoch_id, step_id = io.load_trainer_args(
                        self.checkpoint_cfg.checkpoint_dir,
                        self.checkpoint_cfg.load_serial, self.trainer_id,
                        self._get_checkpoint_load_args())
                    self.checkpoint_cfg.epoch_id = int(epoch_id)
                    self.checkpoint_cfg.step_id = int(step_id)
                else:
T
tangwei12 已提交
185
                    if self.checkpoint_cfg.lookup_table_name:
186
                        io.load_lookup_table_vars(
T
tangwei12 已提交
187 188 189 190
                            exe, self.checkpoint_cfg.checkpoint_dir,
                            self.startup_program,
                            self.checkpoint_cfg.pserver_id,
                            self.checkpoint_cfg.lookup_table_name)
T
tangwei12 已提交
191 192

        if param_path and os.path.isdir(param_path):
T
tangwei12 已提交
193
            # load params from param_path into scope
194
            io.load_persist_vars_without_grad(
T
tangwei12 已提交
195
                exe, dirname=param_path, program=self.startup_program)
T
tangwei12 已提交
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def _transpile_nccl2_dist(self):
        # PADDLE_TRAINER_IPS
        if "PADDLE_TRAINER_IPS" not in os.environ:
            self.nccl_id_var = None
        else:
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
            port = os.getenv("PADDLE_PSERVER_PORT")
            worker_ips = os.getenv("PADDLE_TRAINER_IPS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            self.num_trainers = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            worker_endpoints.remove(current_endpoint)
            # TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
            # in ParallelExecutor to start
            # distributed training using NCCL2
            self.nccl_id_var = self.startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            self.startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": self.nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": self.trainer_id
                })

Q
Qiao Longfei 已提交
226
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
227 228 229 230
        self._transpile_nccl2_dist()
        if self.nccl_id_var != None:
            return

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
T
bug fix  
tangwei12 已提交
250
        self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
T
tangwei12 已提交
251

252 253 254 255 256
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(
T
bug fix  
tangwei12 已提交
257
                self.trainer_id, pservers=pserver_endpoints, trainers=trainers)
258
            if training_role == "PSERVER":
T
tangwei12 已提交
259
                if self.checkpoint_cfg:
T
tangwei12 已提交
260 261 262 263
                    pserver_id = eplist.index(current_endpoint)
                    self.checkpoint_cfg.pserver_id = pserver_id
                    if t.has_distributed_lookup_table:
                        self.checkpoint_cfg.lookup_table_name = t.table_name
T
tangwei12 已提交
264

265 266 267 268 269 270 271 272 273
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
274

275 276 277 278 279 280
    def stop(self):
        """
        stop training
        """
        self.__stop = True

Y
yuyang18 已提交
281
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294
        """
        Train the model.

        Args:
            num_epochs: The number of epoch. An epoch will process all data in reader
            event_handler: The event handler. A function with type (ev:Event)->void
            reader:
            feed_order: Feeding order of reader. None will following the defining
                order in program

        Returns:

        """
295 296 297 298 299 300
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
301 302 303 304 305 306
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
307

308
    def test(self, reader, feed_order):
F
fengjiayi 已提交
309 310 311 312 313 314 315 316 317
        """
        Test the model on given test data

        Args:
            reader: The reader that yields test data.
            feed_order: Feeding order of reader. None will following the defining
                order in program
        """

Y
yuyang18 已提交
318 319
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
320

H
Helin Wang 已提交
321 322
    def save_params(self, param_path):
        # reference: save_persistables in io.py
323 324 325
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
349
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
350 351
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
352
            exe = executor.Executor(self.place)
Y
yuyang18 已提交
353 354 355 356
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
T
tangwei12 已提交
357
        if self.checkpoint_cfg:
T
bug fix  
tangwei12 已提交
358 359
            epochs = [
                epoch_id for epoch_id in range(num_epochs)
T
tangwei12 已提交
360
                if epoch_id >= self.checkpoint_cfg.epoch_id
T
bug fix  
tangwei12 已提交
361 362 363 364
            ]
        else:
            epochs = [epoch_id for epoch_id in range(num_epochs)]

T
tangwei12 已提交
365
        for epoch_id in epochs:
Y
yuyang18 已提交
366 367
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
368
                if self.__stop:
T
bug fix  
tangwei12 已提交
369 370
                    if self.checkpoint_cfg:
                        self._clean_checkpoint()
371
                    return
T
tangwei12 已提交
372

T
tangwei12 已提交
373 374
                if self.checkpoint_cfg and self.checkpoint_cfg.load_serial \
                    and self.checkpoint_cfg.step_id >= step_id and self.checkpoint_cfg.epoch_id == epoch_id:
T
tangwei12 已提交
375 376
                    continue

Y
yuyang18 已提交
377 378 379 380 381 382 383 384 385 386
                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])
T
tangwei12 已提交
387

T
tangwei12 已提交
388 389
                if self.checkpoint_cfg:
                    self._save_checkpoint(epoch_id, step_id)
T
tangwei12 已提交
390
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
Y
yuyang18 已提交
391
            event_handler(EndEpochEvent(epoch_id))
T
tangwei12 已提交
392 393
        if self.checkpoint_cfg:
            self._clean_checkpoint()
F
fengjiayi 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
412 413 414 415 416 417 418 419
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
420
            self._train_by_any_executor(event_handler, pe, num_epochs, reader)
Y
yuyang18 已提交
421 422 423 424 425 426 427 428 429 430 431

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

T
tangwei12 已提交
432
    def _clean_checkpoint(self):
T
tangwei12 已提交
433 434
        assert self.checkpoint_cfg
        io.clean_checkpoint(checkpoint_dir=self.checkpoint_cfg.checkpoint_dir)
T
tangwei12 已提交
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    def _get_checkpoint_load_args(self):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
        """
        return ["epoch_id", "step_id"]

    def _get_checkpoint_save_args(self, epoch_id, step_id):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
        """
        trainer_args = {}
        trainer_args["epoch_id"] = epoch_id
        trainer_args["step_id"] = step_id
        return trainer_args

T
tangwei12 已提交
451
    def _save_checkpoint(self, epoch_id, step_id):
T
tangwei12 已提交
452
        assert self.checkpoint_cfg
T
tangwei12 已提交
453

T
tangwei12 已提交
454 455
        if epoch_id % self.checkpoint_cfg.epoch_interval == 0 \
            and step_id % self.checkpoint_cfg.step_interval == 0:
T
tangwei12 已提交
456 457 458
            exe = executor.Executor(self.place)
            io.save_checkpoint(
                executor=exe,
T
tangwei12 已提交
459
                checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
T
tangwei12 已提交
460
                trainer_id=self.trainer_id,
461
                trainer_args=self._get_checkpoint_save_args(epoch_id, step_id),
T
tangwei12 已提交
462
                main_program=self.train_program,
T
tangwei12 已提交
463
                max_num_checkpoints=self.checkpoint_cfg.max_num_checkpoints)
T
tangwei12 已提交
464

F
fengjiayi 已提交
465 466 467 468 469

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

470
    if isinstance(feed_order, list):
F
fengjiayi 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list