api_custom_impl.h 3.7 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/api/include/tensor.h"
18
#include "paddle/phi/common/int_array.h"
19
#include "paddle/phi/common/place.h"
20
#include "paddle/phi/common/scalar.h"
21
#include "paddle/utils/optional.h"
22 23 24 25

namespace paddle {
namespace experimental {

26 27 28 29
// NOTE: Separate forward and backward(grad) api impl
// NOTE: The api_impl in this file are arranged in alphabetic order.

////////////////// Forward api impls //////////////////////
30

H
hong 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
Tensor conv2d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search);

std::vector<std::vector<Tensor>> conv2d_grad_impl(
    const Tensor& input,
    const Tensor& filter,
    const Tensor& out_grad,
    const std::vector<int>& strides,
    const std::vector<int>& paddings,
    const std::string& paddding_algorithm,
    int groups,
    const std::vector<int>& dilations,
    const std::string& data_format,
    bool use_addto,
    int workspace_size_MB,
    bool exhaustive_search);

57
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking);
58

59
std::vector<Tensor> split_impl(const Tensor& x,
60
                               const IntArray& num_or_sections,
61
                               const Scalar& axis);
C
chentianyu03 已提交
62

63 64 65 66 67 68 69 70 71 72 73 74 75
std::tuple<Tensor, Tensor, Tensor> momentum_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& velocity,
    const Tensor& learning_rate,
    paddle::optional<const Tensor&> master_param,
    float mu,
    bool use_nesterov,
    const std::string& regularization_method,
    float regularization_coeff,
    bool multi_precision,
    float rescale_grad);

76 77 78 79 80
////////////////// Backward(grad) api impls //////////////////////

std::vector<Tensor> add_n_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad);

H
hong 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu);

95 96 97 98
std::vector<Tensor> concat_grad_impl(const std::vector<Tensor>& x,
                                     const Tensor& out_grad,
                                     const Scalar& axis);

99 100 101
std::vector<Tensor> stack_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad,
                                    int axis);
Y
YuanRisheng 已提交
102 103 104
std::vector<Tensor> meshgrid_impl(const std::vector<Tensor>& inputs);
std::vector<Tensor> meshgrid_grad_impl(const std::vector<Tensor>& inputs,
                                       const std::vector<Tensor>& outputs_grad);
105

106 107
}  // namespace experimental
}  // namespace paddle