crop_op.h 3.2 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 CropdleCropdle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
21
namespace operators {  // Internal
W
wanghaoshuang 已提交
22 23 24 25 26 27 28

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

using Tensor = framework::Tensor;

29 30 31 32
int64_t transIndex(std::vector<int64_t> out_shape, std::vector<int64_t> x_shape,
                   std::vector<std::pair<int, int>> crop_rules, size_t index) {
  int64_t dim_size = out_shape.size();
  int64_t pos[dim_size];
W
wanghaoshuang 已提交
33

34 35 36
  for (int64_t i = out_shape.size() - 1; i >= 0; --i) {
    pos[i] = (index % out_shape[i]) + crop_rules[i].first;
    index = index / out_shape[i];
W
wanghaoshuang 已提交
37 38
  }

39 40 41
  size_t result = pos[0];
  for (size_t i = 1; i < x_shape.size(); ++i) {
    result = result * x_shape[i] + pos[i];
W
wanghaoshuang 已提交
42
  }
43 44
  return result;
}
W
wanghaoshuang 已提交
45 46 47 48 49 50 51 52 53

template <typename Place, typename T, size_t D>
void CropGradFunction(const framework::ExecutionContext& context) {
  auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
  auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
  d_x->mutable_data<T>(context.GetPlace());
  auto d_x_dims = d_x->dims();
  auto d_out_dims = d_out->dims();

54
  auto offsets = context.op().Attr<std::vector<int>>("offsets");
W
wanghaoshuang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

  Eigen::array<std::pair<int, int>, D> paddings;
  for (int i = 0; i < d_out_dims.size(); ++i) {
    paddings[i].first = offsets[i];
    paddings[i].second = d_x_dims[i] - d_out_dims[i] - offsets[i];
  }

  auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
  auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
  auto place = context.GetEigenDevice<Place>();
  d_x_tensor.device(place) = d_out_tensor.pad(paddings, 0);
}

template <typename Place, typename T>
class CropGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
72
    size_t rank =
W
wanghaoshuang 已提交
73
        context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
74
    switch (rank) {
W
wanghaoshuang 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
      case 1:
        CropGradFunction<Place, T, 1>(context);
        break;
      case 2:
        CropGradFunction<Place, T, 2>(context);
        break;
      case 3:
        CropGradFunction<Place, T, 3>(context);
        break;
      case 4:
        CropGradFunction<Place, T, 4>(context);
        break;
      case 5:
        CropGradFunction<Place, T, 5>(context);
        break;
      case 6:
        CropGradFunction<Place, T, 6>(context);
        break;
      default:
94 95
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
W
wanghaoshuang 已提交
96 97 98 99 100 101
    }
  }
};

}  // namespace operators
}  // namespace paddle