pool_mkldnn_op.cc 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18 19 20 21

namespace paddle {
namespace operators {

22
using framework::DataLayout;
23 24 25 26 27 28
using dnnl::memory;
using dnnl::pooling_backward;
using dnnl::pooling_forward;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::stream;
29
using platform::to_void_cast;
30

31 32
template <typename T>
class PoolingMKLDNNHandler
33 34
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                               dnnl::pooling_backward> {
35 36
 public:
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
37
                       const dnnl::engine mkldnn_engine, const Tensor* input,
38
                       Tensor* output)
39 40
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input tensor."));
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input tensor."));

    const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    const bool global_pooling = ctx.Attr<bool>("global_pooling");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
            ksize.size()));
    PADDLE_ENFORCE_EQ(
        pooling_type == "max" || pooling_type == "avg", true,
        platform::errors::InvalidArgument(
            "The pooling_type must be 'max' or 'avg', but received %s.",
            pooling_type));
    PADDLE_ENFORCE_EQ(
        input->dims().size(), 4,
        platform::errors::InvalidArgument(
            "Input dim must be with 4, i.e. NCHW, but received %d.",
            input->dims().size()));

    const auto input_dims = input->dims();
    framework::DDim data_dims =
        framework::slice_ddim(input_dims, 2, input_dims.size());

    if (global_pooling) {
      operators::UpdateKsize(&ksize, data_dims);
    }
88

89 90
    operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                             data_dims, strides, ksize);
91

92 93
    const auto src_tz = paddle::framework::vectorize(input->dims());
    const auto dst_tz = paddle::framework::vectorize(output->dims());
94

95
    const auto is_test = ctx.Attr<bool>("is_test");
96

97
    const auto dt = framework::ToMKLDNNDataType(input->type());
98

99
    const auto exclude_padding = ctx.Attr<bool>("exclusive");
100

101
    const auto src_md = dnnl::memory::desc(src_tz, dt, input->format());
102 103 104 105
    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
106

107 108
    const auto dst_md =
        platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
109

110
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
111

112
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
113

114 115 116
    if (ceil_mode) {
      CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
117
    }
118 119 120 121

    ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides);

    this->AcquireForwardPrimitiveDescriptor(
122 123
        is_test ? dnnl::prop_kind::forward_inference
                : dnnl::prop_kind::forward_training,
124
        pooling_type == "max"
125 126 127
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
128
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);
129 130 131
  }

  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
132
                       const dnnl::engine mkldnn_engine, const Tensor* in_x,
133 134
                       const Tensor* out_grad, Tensor* in_x_grad)

135 136
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(
        in_x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
    PADDLE_ENFORCE_NE(
        in_x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for Input tensor"));

    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input output_grad tensor"));
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input output_grad tensor"));

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto in_x_dims = in_x->dims();
    framework::DDim data_dims =
        framework::slice_ddim(in_x_dims, 2, in_x_dims.size());

    if (global_pooling) {
      operators::UpdateKsize(&ksize, data_dims);
    }
178

179 180 181 182 183 184 185 186
    operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                             data_dims, strides, ksize);

    auto src_tz = paddle::framework::vectorize<int64_t>(in_x->dims());
    auto diff_src_tz = paddle::framework::vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = paddle::framework::vectorize<int64_t>(out_grad->dims());

    const auto dt = framework::ToMKLDNNDataType(in_x->type());
187 188 189
    auto src_md = dnnl::memory::desc(src_tz, dt, in_x->format());
    auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, MKLDNNMemoryFormat::any);
    auto diff_dst_md = dnnl::memory::desc(
190
        diff_dst_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());
191
    auto diff_src_md = dnnl::memory::desc(
192 193 194 195 196 197 198 199
        diff_src_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);

    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

    if (ceil_mode) {
      CorrectOutputSize(src_tz, diff_dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
200
    }
201 202 203 204 205
    ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides);

    const auto exclude_padding = ctx.Attr<bool>("exclusive");

    this->AcquireForwardPrimitiveDescriptor(
206
        dnnl::prop_kind::forward_training,
207
        pooling_type == "max"
208 209 210
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
211 212 213 214
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);

    this->AcquireBackwardPrimitiveDescriptor(
        pooling_type == "max"
215 216 217
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
218 219
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
        mkldnn_paddings[1]);
220 221
  }

222
  std::shared_ptr<dnnl::memory> AcquireWorkspaceMemory(
223 224
      const platform::MKLDNNDeviceContext& dev_ctx,
      const std::string& unique_name) {
225
    dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
226
    // Pooling Workspace has to be passed to Grad op that
227 228
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
229 230 231
    std::string workspace_key =
        platform::CreateKey(dev_ctx, workspace_md.dims(),
                            workspace_md.data_type(), unique_name, "@wrk");
232 233
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(workspace_key));
234 235 236 237
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
238
      mem_p = std::static_pointer_cast<dnnl::memory>(
239
          dev_ctx.GetBlob(workspace_key));
240
      if (mem_p == nullptr) {
241
        mem_p = std::make_shared<dnnl::memory>(workspace_md, this->engine_);
242
        dev_ctx.SetBlob(workspace_key, mem_p);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>* ksize,
      std::vector<int64_t>* strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
      auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
      auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
      auto OH = static_cast<double>(ksize->at(0));
      auto OW = static_cast<double>(ksize->at(1));

      strides->at(0) =
          static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
      strides->at(1) =
          static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
      ksize->at(0) =
          static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
      ksize->at(1) =
          static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
    }
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};

291 292 293 294
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
295 296 297
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
298 299 300 301 302 303
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

304
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), input, output);
305 306 307 308

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

A
Adam 已提交
309
    auto pool_p = handler.AcquireForwardPrimitive();
310

311
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
312 313
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
314
      // Training
315 316
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.OutputName("Out"));
317 318 319
      pool_p->execute(astream, {{DNNL_ARG_SRC, *src_memory},
                                {DNNL_ARG_DST, *dst_memory},
                                {DNNL_ARG_WORKSPACE, *workspace_memory}});
320 321
    } else {
      // Inference
322 323
      pool_p->execute(
          astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}});
324
    }
A
Adam 已提交
325
    astream.wait();
326 327

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
328
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
329 330 331 332 333 334 335
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
336 337 338
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
339 340 341 342 343 344 345
    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

346 347
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), in_x, out_grad,
                                    in_x_grad);
348 349 350 351

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

A
Adam 已提交
352
    auto pool_bwd_p = handler.AcquireBackwardPrimitive();
353

354
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
355
    if (ctx.Attr<std::string>("pooling_type") == "max") {
356
      // Max - pooling needs Workspace
357 358
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.InputName("Out"));
359 360 361
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory},
                                    {DNNL_ARG_WORKSPACE, *workspace_memory}});
362 363
    } else {
      // Average Pooling
364 365
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory}});
366
    }
A
Adam 已提交
367
    astream.wait();
368 369

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
370
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
371 372 373 374 375 376
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

377 378
namespace ops = paddle::operators;

379
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
380 381
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
382 383
                   ops::PoolMKLDNNOpKernel<uint8_t>,
                   ops::PoolMKLDNNOpKernel<paddle::platform::bfloat16>);
X
xiaoli.liu@intel.com 已提交
384

385
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
A
arlesniak 已提交
386 387
                   ops::PoolMKLDNNGradOpKernel<float>,
                   ops::PoolMKLDNNGradOpKernel<paddle::platform::bfloat16>);