test_normalize.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np


def p_normalize(x, axis=1, p=2, epsilon=1e-12, keepdims=True):
    if len(x.shape) == 1:
        axis = 0
    xp = np.power(np.abs(x), p)
    s = np.sum(xp, axis=axis, keepdims=keepdims)
    r = np.maximum(np.power(s, 1.0 / p), epsilon)
    return x / r


class TestNNFunctionalNormalize(unittest.TestCase):
    def setUp(self):
        self.input_np = np.random.random(size=(10, 10)).astype(np.float32)
        self.input_np2 = np.array([0.0, 0.0]).astype(np.float32)
        self.expected0 = p_normalize(self.input_np)
        self.expected1 = p_normalize(self.input_np, p=1.5)
        self.expected2 = p_normalize(self.input_np, axis=0)
        self.expected3 = p_normalize(self.input_np2)

    def run_imperative(self):
        x = paddle.to_variable(self.input_np)
        y = F.normalize(x)
        self.assertTrue(np.allclose(y.numpy(), self.expected0))

        y = F.normalize(x, p=1.5)
        self.assertTrue(np.allclose(y.numpy(), self.expected1))

        y = F.normalize(x, axis=0)
        self.assertTrue(np.allclose(y.numpy(), self.expected2))

        x = paddle.to_variable(self.input_np2)
        y = F.normalize(x)
        self.assertTrue(np.allclose(y.numpy(), self.expected3))

    def run_static(self, use_gpu=False):
        x = paddle.data(name='input', shape=[10, 10], dtype='float32')
        x2 = paddle.data(name='input2', shape=[2], dtype='float32')
        result0 = F.normalize(x)
        result1 = F.normalize(x, p=1.5)
        result2 = F.normalize(x, axis=0)
        result3 = F.normalize(x, name='aaa')
        result4 = F.normalize(x2)

        place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        static_result = exe.run(
            feed={"input": self.input_np,
                  "input2": self.input_np2},
            fetch_list=[result0, result1, result2, result4])

        self.assertTrue(np.allclose(static_result[0], self.expected0))
        self.assertTrue(np.allclose(static_result[1], self.expected1))
        self.assertTrue(np.allclose(static_result[2], self.expected2))
        self.assertTrue('aaa' in result3.name)
        self.assertTrue(np.allclose(static_result[3], self.expected3))

    def test_cpu(self):
        paddle.disable_static(place=paddle.fluid.CPUPlace())
        self.run_imperative()
        paddle.enable_static()

        with fluid.program_guard(fluid.Program()):
            self.run_static()

    def test_gpu(self):
        if not fluid.core.is_compiled_with_cuda():
            return

        paddle.disable_static(place=paddle.fluid.CUDAPlace(0))
        self.run_imperative()
        paddle.enable_static()

        with fluid.program_guard(fluid.Program()):
            self.run_static(use_gpu=True)


if __name__ == "__main__":
    unittest.main()