c_embedding_kernel.cu 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/c_embedding_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096;

static inline int NumBlocks(const int N) {
  return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
                  kNumMaxinumNumBlocks);
}

template <typename T, typename IndexT>
__global__ void CEmbedding(T* out,
                           const T* table,
                           const IndexT* ids,
                           const int rows,
                           const int columns,
                           const int64_t N,
                           const int64_t start_idx,
                           const int64_t end_idx,
                           const int64_t limit) {
  CUDA_KERNEL_LOOP(i, limit) {
    size_t row = i / columns;
    size_t col = i % columns;
    auto id = ids[row];

    if (id >= start_idx && id < end_idx) {
      auto real_idx = id - start_idx;
      PADDLE_ENFORCE(real_idx < N,
                     "The index is out of bounds, "
                     "please check whether the dimensions of index and "
                     "input meet the requirements. It should "
                     "be less than [%d], but received [%d]",
                     N,
                     real_idx);
      out[i] = table[real_idx * columns + col];
    } else {
      out[i] = static_cast<T>(0);
    }
  }
}

template <typename T, typename Context>
void CEmbeddingKernel(const Context& ctx,
                      const DenseTensor& w,
                      const DenseTensor& ids,
                      int64_t start_index,
                      DenseTensor* out) {
  size_t N = w.dims()[0];
  size_t D = w.dims()[1];
  size_t K = ids.numel();

  const int64_t end_idx = start_index + N;

  auto* table = w.data<T>();
  auto* output = ctx.template Alloc<T>(out);

  auto limit = K * D;
  int blocks = NumBlocks(limit);
  int threads = kNumCUDAThreads;

  const auto& index_type = ids.dtype();
  if (index_type == phi::DataType::INT32) {
    CEmbedding<T, int32_t>
        <<<blocks, threads, 0, ctx.stream()>>>(output,
                                               table,
                                               ids.data<int32_t>(),
                                               K,
                                               D,
                                               N,
                                               start_index,
                                               end_idx,
                                               limit);

  } else if (index_type == phi::DataType::INT64) {
    CEmbedding<T, int64_t>
        <<<blocks, threads, 0, ctx.stream()>>>(output,
                                               table,
                                               ids.data<int64_t>(),
                                               K,
                                               D,
                                               N,
                                               start_index,
                                               end_idx,
                                               limit);
  } else {
    PADDLE_THROW(phi::errors::Unavailable(
        "GPU c_embedding ids only support int32 or int64."));
  }
}
}  // namespace phi

#if NCCL_VERSION_CODE >= 21000 && CUDA_VERSION >= 11000
PD_REGISTER_KERNEL(c_embedding,
                   GPU,
                   ALL_LAYOUT,
                   phi::CEmbeddingKernel,
                   float,
                   double,
                   phi::dtype::bfloat16,
                   phi::dtype::float16) {}
#else
PD_REGISTER_KERNEL(c_embedding,
                   GPU,
                   ALL_LAYOUT,
                   phi::CEmbeddingKernel,
                   float,
                   double,
                   phi::dtype::float16) {}
#endif