analysis_predictor.h 12.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/fluid/framework/naive_executor.h"
22
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
23 24
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
25
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
26
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
27
#include "paddle/fluid/inference/api/paddle_inference_api.h"
28
#include "paddle/fluid/platform/float16.h"
29
#include "paddle/fluid/string/printf.h"
30 31 32 33
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
34

35 36 37
namespace paddle_infer {
using float16 = paddle::platform::float16;
}
38 39 40 41 42 43 44 45 46 47 48
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
49 50 51 52 53
namespace paddle {

using inference::analysis::Argument;
using inference::analysis::Analyzer;
using framework::proto::ProgramDesc;
54
using framework::NaiveExecutor;
Y
Yan Chunwei 已提交
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
86
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
87
 public:
88 89 90 91 92
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
93
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
94 95 96 97
    if (config_.shape_range_info_collected()) {
      config_.SwitchIrOptim(false);
      config_.EnableMemoryOptim(false);
    }
98 99
    predictor_id_ = inference::GetUniqueId();
  }
100 101 102
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
103
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
104

105 106 107 108 109 110 111 112 113 114 115 116
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
117 118
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
119

120 121 122 123 124 125 126 127
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
128 129 130 131
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

132 133 134 135 136
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
N
nhzlx 已提交
137
  std::vector<std::string> GetInputNames();
138 139 140 141 142
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
N
nhzlx 已提交
143 144
  std::vector<std::string> GetOutputNames();

145 146 147 148 149 150
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
151 152
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
153 154 155 156 157 158
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
159 160
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
161 162 163 164 165
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
166 167
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;

168 169 170 171 172
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
173 174
  bool ZeroCopyRun() override;

175 176 177 178 179
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
180
  void CreateFeedFetchVar(framework::Scope *scope);
181 182 183 184
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
185
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
186

187 188 189 190
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
191
  void PrepareArgument();
192 193 194 195
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
196 197
  void OptimizeInferenceProgram();

198 199 200 201 202 203
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
  void ClearIntermediateTensor();

204 205 206 207 208 209 210 211 212 213 214
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

215 216 217 218 219
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
220
  Argument &analysis_argument() { return argument_; }
221 222 223 224 225
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
226
  std::unique_ptr<PaddlePredictor> Clone() override;
227 228 229 230 231
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
232
  framework::Scope *scope() { return scope_.get(); }
233 234 235 236 237
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
238 239
  framework::ProgramDesc &program() { return *inference_program_; }

240 241 242 243 244
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
245
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
246

247 248 249 250 251
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
252 253
  bool MkldnnQuantize();

254 255 256 257 258
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
259 260
  void SaveOptimModel(const std::string &dir);

261
 protected:
262 263 264 265 266 267 268
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
269
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
270 271 272 273 274 275
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
276
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
277 278 279 280 281
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
282
  bool CreateExecutor();
283 284 285 286 287
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
288 289
  bool PrepareExecutor();

290 291 292 293 294
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
295
  bool LoadProgramDesc();
296 297 298 299 300
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
301
  bool LoadParameters();
302

303 304 305 306 307 308 309
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
310 311
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
312 313 314 315 316 317 318
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
319 320
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
321 322 323 324 325 326
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
327 328 329
  template <typename T>
  void GetFetchOne(const framework::LoDTensor &fetchs,
                   PaddleTensor *output_data);
330 331 332 333 334 335 336 337
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
338
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
339 340 341 342 343 344 345 346 347 348 349

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

350 351 352 353 354 355
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
356
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
357

N
nhzlx 已提交
358
#if PADDLE_WITH_TENSORRT
359 360 361 362 363 364 365 366 367 368 369 370 371 372
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
373
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
374
#endif
N
nhzlx 已提交
375

376 377 378 379 380 381 382 383
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

384 385 386 387
 private:
  void StatisticShapeRangeInfo();
  void CollectShapeRangeInfo();

Y
Yan Chunwei 已提交
388
 private:
389
  AnalysisConfig config_;
Y
Yan Chunwei 已提交
390
  Argument argument_;
391 392 393 394 395
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
396
  framework::OpCompatibleMap op_compatible_map_;
397 398
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
399 400
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
401
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
402 403
  std::map<size_t, std::string> idx2fetches_;

404 405 406 407 408 409 410 411 412 413
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

414
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
415
  // concurrency problems, wrong results and memory leak, so cache them.
416
  std::vector<framework::LoDTensor> feed_tensors_;
Y
Yan Chunwei 已提交
417
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
418 419
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
420

Y
Yan Chunwei 已提交
421 422 423 424
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
425
  int predictor_id_;
Y
Yan Chunwei 已提交
426

427 428 429
 private:
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
430 431

  std::map<std::string, std::vector<std::vector<int32_t>>> shape_info_;
Y
Yan Chunwei 已提交
432 433 434
};

}  // namespace paddle