operator.h 13.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
qijun 已提交
36
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
37 38 39 40

namespace paddle {
namespace framework {

41
/// If a variable is a empty variable, that name will be used.
42
constexpr char kEmptyVarName[] = "@EMPTY@";
43 44 45

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
46
constexpr char kTempVarName[] = "@TEMP@";
47 48 49 50

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
51
constexpr char kGradVarSuffix[] = "@GRAD";
52 53

/// Variables with this suffix are supposed to be filled up with zeros.
54
constexpr char kZeroVarSuffix[] = "@ZERO";
55

D
dzhwinter 已提交
56
// define some kernel priority
57
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
58 59
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

60 61 62 63
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
64 65
proto::VarType::Type GetDataTypeOfVar(const Variable* var);

Q
Qiao Longfei 已提交
66
class OperatorBase;
67
class ExecutionContext;
68

Q
Qiao Longfei 已提交
69 70 71 72 73 74 75 76
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
77 78
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
79

Q
Qiao Longfei 已提交
80 81
  virtual ~OperatorBase() {}

82
  /// Executor will call this interface function to Run an op.
83 84
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
85

T
typhoonzero 已提交
86 87 88
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

89 90 91
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
92

93 94
  virtual bool SupportGPU() const { return false; }

95 96 97 98 99 100 101 102 103
  const std::string& Type() const { return type_; }

  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
104

Y
Yu Yang 已提交
105 106
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
107

108
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
109
  //! Get a input with argument's name described in `op_proto`
110
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
111
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
112
  const std::vector<std::string>& Inputs(const std::string& name) const;
113
  //! Get all inputs variable names
Q
qijun 已提交
114 115
  std::vector<std::string> InputVars() const;

116
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
117
  //! Get a output with argument's name described in `op_proto`
118
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
119 120
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
121
  const std::vector<std::string>& Outputs(const std::string& name) const;
122
  //! Get all outputs variable names
Y
Yu Yang 已提交
123
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
124

Y
Yu Yang 已提交
125
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
126 127
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
128

Q
qiaolongfei 已提交
129
 protected:
Q
Qiao Longfei 已提交
130
  std::string type_;
D
dongzhihong 已提交
131
  // NOTE: in case of OpGrad, inputs_ contains:
132
  // I (Inputs)
D
dongzhihong 已提交
133 134
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
135
  VariableNameMap inputs_;
Y
Yu Yang 已提交
136

D
dongzhihong 已提交
137 138
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
139
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
140
  AttributeMap attrs_;
141 142 143 144

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
145 146
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
147 148
};

Y
Yu Yang 已提交
149 150
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
151
// register it. i.e. `Clone` method is not needed to define by yourself.
152 153 154
#define DEFINE_OP_CLONE_METHOD(cls)                                            \
  std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final {     \
    return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
155
  }
Y
Yu Yang 已提交
156

Y
Yu Yang 已提交
157 158 159 160
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
161 162
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
163 164 165
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
166
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
167

168 169
class NOP : public OperatorBase {
 public:
170
  using OperatorBase::OperatorBase;
171 172 173
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
174 175 176 177

 private:
  void RunImpl(const Scope& scope,
               const platform::Place& place) const override {}
178 179
};

180
class ExecutionContext {
Y
Yan Chunwei 已提交
181
 public:
182 183 184
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
185

Q
qiaolongfei 已提交
186 187 188 189
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
190
  template <typename T>
Y
Yu Yang 已提交
191 192
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
193 194
  }

195 196 197 198
  bool HasInput(const std::string& name) const { return op_.HasInputs(name); }

  bool HasOutput(const std::string& name) const { return op_.HasOutputs(name); }

Y
Yu Yang 已提交
199
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
200
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
201 202
  }

Y
Yu Yang 已提交
203
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
204
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
205 206
  }

207
  const Variable* InputVar(const std::string& name) const {
208
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
209
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
210 211
  }

212
  Variable* OutputVar(const std::string& name) const {
213
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
214
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
215 216
  }

217 218
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
219 220
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
221
    res.reserve(names.size());
222 223
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
224 225
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
226
                   });
Y
Yan Chunwei 已提交
227 228 229
    return res;
  }

230
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
231
    auto names = op_.Outputs(name);
232
    std::vector<Variable*> res;
233
    res.reserve(names.size());
234 235
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
236 237
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
238
                   });
Y
Yan Chunwei 已提交
239 240 241
    return res;
  }

242 243
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
244
    auto* var = InputVar(name);
245
    return var == nullptr ? nullptr : &var->Get<T>();
246 247 248 249
  }

  template <typename T>
  T* Output(const std::string& name) const {
250
    auto var = OutputVar(name);
251
    return var == nullptr ? nullptr : var->GetMutable<T>();
252 253 254 255 256 257 258 259
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
260
                   [&](const std::string& sub_name) {
261
                     auto var = scope_.FindVar(sub_name);
262
                     return var == nullptr ? nullptr : &var->Get<T>();
263 264 265 266 267
                   });
    return res;
  }

  template <typename T>
268
  std::vector<T*> MultiOutput(const std::string& name) const {
269
    auto names = op_.Outputs(name);
270
    std::vector<T*> res;
271 272
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
273
                   [&](const std::string& sub_name) {
274
                     auto var = scope_.FindVar(sub_name);
275
                     return var == nullptr ? nullptr : var->GetMutable<T>();
276 277 278 279
                   });
    return res;
  }

280
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
281

Q
QI JUN 已提交
282 283 284 285 286
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

287
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
288
    return device_context_;
Q
qijun 已提交
289
  }
Q
qijun 已提交
290

Q
QI JUN 已提交
291 292 293 294 295 296 297 298
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
299
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
300 301 302
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
303

D
dzhwinter 已提交
304
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
305 306 307 308
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

309
 private:
310 311
  const OperatorBase& op_;
  const Scope& scope_;
312
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
313 314
};

315 316 317 318 319 320 321 322 323 324 325 326 327 328
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
329
class OpKernelBase {
Q
qijun 已提交
330
 public:
Q
qijun 已提交
331
  /**
332
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
333 334
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
335
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
336 337
   */

338
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
339

Y
Yu Yang 已提交
340 341 342 343 344 345 346
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
347 348
};

Y
Yu Yang 已提交
349 350
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
351
  using OpKernelMap =
Y
Yu Yang 已提交
352 353
      std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
                         OpKernelType::Hash>;
Q
Qiao Longfei 已提交
354

Y
Yu Yang 已提交
355 356
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
357 358
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
359 360 361 362
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
363
  }
Y
Yan Chunwei 已提交
364

365
  bool SupportGPU() const override {
Y
Yu Yang 已提交
366 367 368 369 370
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
371 372
  }

373 374 375
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
376

Q
qiaolongfei 已提交
377
 protected:
378 379 380 381
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
382 383

 private:
384
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
385
  // same.
386
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
387
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Q
Qiao Longfei 已提交
388 389
};

Y
Yu Yang 已提交
390 391
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
392 393
}  // namespace framework
}  // namespace paddle