broadcast_op_handle_test.h 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <memory>
18
#include <string>
19
#include <unordered_map>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include <vector>

#include "gtest/gtest.h"
#include "paddle/fluid/framework/details/broadcast_op_handle.h"

#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
namespace details {

namespace f = paddle::framework;
namespace p = paddle::platform;

// test data amount
const f::DDim kDims = {20, 20};

struct TestBroadcastOpHandle {
  std::vector<std::unique_ptr<p::DeviceContext>> ctxs_;
  std::vector<Scope*> local_scopes_;
  std::vector<Scope*> param_scopes_;
  Scope g_scope_;
X
Xin Pan 已提交
42 43 44
  OpHandleBase* op_handle_;
  std::vector<VarHandleBase*> vars_;
  std::vector<std::unique_ptr<ir::Node>> nodes_;
45 46
  std::vector<p::Place> place_list_;
  bool use_gpu_;
47
#if defined(PADDLE_WITH_NCCL)
48 49 50 51 52 53 54
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
#endif

  void WaitAll() {
    for (size_t j = 0; j < ctxs_.size(); ++j) {
      ctxs_[j]->Wait();
    }
55
#if defined(PADDLE_WITH_NCCL)
56 57 58 59 60 61 62 63 64
    if (nccl_ctxs_) {
      nccl_ctxs_->WaitAll();
    }
#endif
  }

  void InitCtxOnGpu(bool use_gpu) {
    use_gpu_ = use_gpu;
    if (use_gpu_) {
65
#if defined(PADDLE_WITH_NCCL)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
      int count = p::GetCUDADeviceCount();
      if (count <= 1) {
        LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
                        "device count is "
                     << count;
        exit(0);
      }
      for (int i = 0; i < count; ++i) {
        auto p = p::CUDAPlace(i);
        place_list_.push_back(p);
        ctxs_.emplace_back(new p::CUDADeviceContext(p));
      }
      nccl_ctxs_.reset(new platform::NCCLContextMap(place_list_));
#else
      PADDLE_THROW("CUDA is not support.");
#endif
    } else {
      int count = 8;
      for (int i = 0; i < count; ++i) {
        auto p = p::CPUPlace();
        place_list_.push_back(p);
        ctxs_.emplace_back(new p::CPUDeviceContext(p));
      }
89
#if defined(PADDLE_WITH_NCCL)
90 91 92 93 94 95
      nccl_ctxs_.reset(nullptr);
#endif
    }
  }

  void InitBroadcastOp(size_t input_scope_idx) {
X
Xin Pan 已提交
96
    nodes_.clear();
97
    std::unordered_map<Scope*, Scope*> scope_map;
98 99 100 101 102
    for (size_t j = 0; j < place_list_.size(); ++j) {
      local_scopes_.push_back(&(g_scope_.NewScope()));
      Scope& local_scope = local_scopes_.back()->NewScope();
      local_scope.Var("out");
      param_scopes_.emplace_back(&local_scope);
103
      scope_map.emplace(local_scopes_.back(), param_scopes_.back());
104 105 106
    }
    param_scopes_[input_scope_idx]->Var("input");

X
Xin Pan 已提交
107 108
    nodes_.emplace_back(
        ir::CreateNodeForTest("node0", ir::Node::Type::kOperation));
109
    if (use_gpu_) {
110
#if defined(PADDLE_WITH_NCCL)
X
Xin Pan 已提交
111 112
      op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
                                         place_list_, nccl_ctxs_.get());
113 114 115 116
#else
      PADDLE_THROW("CUDA is not support.");
#endif
    } else {
117
#if defined(PADDLE_WITH_NCCL)
X
Xin Pan 已提交
118 119
      op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
                                         place_list_, nccl_ctxs_.get());
120
#else
X
Xin Pan 已提交
121 122
      op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
                                         place_list_);
123 124 125
#endif
    }

126 127
    op_handle_->SetLocalExecScopes(scope_map);

X
Xin Pan 已提交
128 129 130 131
    nodes_.emplace_back(
        ir::CreateNodeForTest("node1", ir::Node::Type::kVariable));
    auto* in_var_handle = new VarHandle(nodes_.back().get(), 1, input_scope_idx,
                                        "input", place_list_[input_scope_idx]);
132 133 134 135 136
    vars_.emplace_back(in_var_handle);
    op_handle_->AddInput(in_var_handle);

    // add dummy var

X
Xin Pan 已提交
137 138 139
    nodes_.emplace_back(
        ir::CreateNodeForTest("node2", ir::Node::Type::kVariable));
    vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
140
    DummyVarHandle* dummy_var_handle =
X
Xin Pan 已提交
141
        static_cast<DummyVarHandle*>(vars_.back());
142 143 144 145 146 147 148
    dummy_var_handle->ClearGeneratedOp();
    op_handle_->AddInput(dummy_var_handle);

    for (size_t j = 0; j < place_list_.size(); ++j) {
      if (!use_gpu_) {
        op_handle_->SetDeviceContext(place_list_[j], ctxs_[j].get());
      }
X
Xin Pan 已提交
149 150
      nodes_.emplace_back(
          ir::CreateNodeForTest("node3", ir::Node::Type::kVariable));
151
      VarHandle* out_var_handle =
X
Xin Pan 已提交
152
          new VarHandle(nodes_.back().get(), 2, j, "out", place_list_[j]);
153 154 155 156 157
      vars_.emplace_back(out_var_handle);
      op_handle_->AddOutput(out_var_handle);
    }

    // add dummy var
X
Xin Pan 已提交
158 159 160
    nodes_.emplace_back(
        ir::CreateNodeForTest("node4", ir::Node::Type::kVariable));
    vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
161
    DummyVarHandle* out_dummy_var_handle =
X
Xin Pan 已提交
162
        static_cast<DummyVarHandle*>(vars_.back());
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    out_dummy_var_handle->ClearGeneratedOp();
    op_handle_->AddOutput(out_dummy_var_handle);
  }

  std::vector<float> InitLoDTensor(const std::string& varname,
                                   size_t input_scope_idx, const f::LoD& lod,
                                   float val_scalar = 0.0) {
    auto var = param_scopes_[input_scope_idx]->FindVar(varname);

    PADDLE_ENFORCE_NOT_NULL(var);
    auto lod_tensor = var->GetMutable<f::LoDTensor>();
    std::vector<float> send_vector(static_cast<size_t>(f::product(kDims)));
    for (size_t k = 0; k < send_vector.size(); ++k) {
      send_vector[k] = k + val_scalar;
    }
    paddle::framework::TensorFromVector<float>(
        send_vector, *(ctxs_[input_scope_idx]), lod_tensor);
    lod_tensor->set_lod(lod);
    lod_tensor->Resize(kDims);
    return send_vector;
  }

  std::vector<float> InitSelectedRows(const std::string& varname,
                                      size_t input_scope_idx,
                                      const std::vector<int64_t>& rows,
                                      int height, float value_scalar = 0.0) {
    std::vector<float> send_vector(static_cast<size_t>(f::product(kDims)));
    for (size_t k = 0; k < send_vector.size(); ++k) {
      send_vector[k] = k + value_scalar;
    }

    auto var = param_scopes_[input_scope_idx]->FindVar(varname);
    PADDLE_ENFORCE_NOT_NULL(var);
    auto selected_rows = var->GetMutable<f::SelectedRows>();
    auto value = selected_rows->mutable_value();
    value->mutable_data<float>(kDims, place_list_[input_scope_idx]);
    selected_rows->set_height(height);
    selected_rows->set_rows(rows);

    paddle::framework::TensorFromVector<float>(
        send_vector, *(ctxs_[input_scope_idx]), value);

    return send_vector;
  }

  void SelectedRowsEqual(const std::string& varname, int input_scope_idx,
                         const std::vector<float>& send_vector,
                         const std::vector<int64_t>& rows, int height) {
    auto var = param_scopes_[input_scope_idx]->FindVar(varname);
    PADDLE_ENFORCE_NOT_NULL(var);
    auto& selected_rows = var->Get<f::SelectedRows>();
    auto rt = selected_rows.value();
    PADDLE_ENFORCE_EQ(selected_rows.height(), height, "height is not equal.");

    for (size_t k = 0; k < selected_rows.rows().size(); ++k) {
      PADDLE_ENFORCE_EQ(selected_rows.rows()[k], rows[k]);
    }

    p::CPUPlace cpu_place;
    f::Tensor result_tensor;
    f::TensorCopySync(rt, cpu_place, &result_tensor);
    float* ct = result_tensor.data<float>();

    for (int64_t i = 0; i < f::product(kDims); ++i) {
      ASSERT_NEAR(ct[i], send_vector[i], 1e-5);
    }
  }

  void LoDTensorEqual(const std::string& varname,
                      const std::vector<float>& send_vec, const f::LoD& lod,
                      framework::Scope* scope) {
    p::CPUPlace cpu_place;
    auto var = scope->FindVar(varname);
    PADDLE_ENFORCE_NOT_NULL(var);
    auto tensor = var->Get<f::LoDTensor>();
    PADDLE_ENFORCE_EQ(tensor.lod(), lod, "lod is not equal.");
    f::Tensor result_tensor;
    f::TensorCopySync(tensor, cpu_place, &result_tensor);
    float* ct = result_tensor.mutable_data<float>(cpu_place);
    for (int64_t k = 0; k < f::product(kDims); ++k) {
      ASSERT_NEAR(ct[k], send_vec[k], 1e-5);
    }
  }

  void TestBroadcastLodTensor(size_t input_scope_idx) {
    f::LoD lod{{0, 10, 20}};
    auto send_vector = InitLoDTensor("input", input_scope_idx, lod);

    op_handle_->Run(false);

    WaitAll();
    for (size_t j = 0; j < place_list_.size(); ++j) {
      LoDTensorEqual("out", send_vector, lod, param_scopes_[j]);
    }
  }

  void TestBroadcastSelectedRows(size_t input_scope_idx) {
    std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
                              2, 4, 6, 3, 1, 1, 1,  1, 3, 7};
    int height = static_cast<int>(kDims[0] * 2);
    auto send_vector = InitSelectedRows("input", input_scope_idx, rows, height);

    op_handle_->Run(false);

    WaitAll();
    for (size_t j = 0; j < place_list_.size(); ++j) {
      SelectedRowsEqual("out", input_scope_idx, send_vector, rows, height);
    }
  }
};

}  // namespace details
}  // namespace framework
}  // namespace paddle