test_train.py 2.1 KB
Newer Older
1 2 3 4 5 6
import paddle.v2 as paddle
import paddle.v2.dataset.uci_housing as uci_housing


def main():
    # init
Q
qiaolongfei 已提交
7
    paddle.init(use_gpu=False, trainer_count=1)
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

    # network config
    x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
    y_predict = paddle.layer.fc(input=x,
                                param_attr=paddle.attr.Param(name='w'),
                                size=1,
                                act=paddle.activation.Linear(),
                                bias_attr=paddle.attr.Param(name='b'))
    y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
    cost = paddle.layer.mse_cost(input=y_predict, label=y)

    # create parameters
    parameters = paddle.parameters.create(cost)

    # create optimizer
    optimizer = paddle.optimizer.Momentum(momentum=0)

D
dzhwinter 已提交
25 26
    #TODO(zhihong) : replace optimizer with new OptimizerConfig

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=optimizer,
                                 is_local=False,
                                 pserver_spec="localhost:3000")

    # event_handler to print training and testing info
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d, Batch %d, Cost %f" % (
                    event.pass_id, event.batch_id, event.cost)

        if isinstance(event, paddle.event.EndPass):
            if (event.pass_id + 1) % 10 == 0:
                result = trainer.test(
                    reader=paddle.batch(
                        uci_housing.test(), batch_size=2),
                    feeding={'x': 0,
                             'y': 1})
                print "Test %d, %.2f" % (event.pass_id, result.cost)

    # training
    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                uci_housing.train(), buf_size=500),
            batch_size=2),
        feeding={'x': 0,
                 'y': 1},
        event_handler=event_handler,
        num_passes=30)


if __name__ == '__main__':
    main()