partitioner.py 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import framework as framework
from paddle.fluid import core, unique_name
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
23 24 25 26
from paddle.distributed.auto_parallel.operators.common import get_distributed_operator_impl_container
from paddle.distributed.auto_parallel.dist_context import DistributedContext, DistributedOperatorContext
from .dist_attribute import OperatorDistributedAttribute
from .process_group import new_process_group
27
from .utils import set_dist_op_desc_original_id
28
from .utils import print_program_with_dist_attr, is_forward_op, is_backward_op, is_loss_op, is_optimize_op
J
JZ-LIANG 已提交
29
from .operators.common import BACKWARD_ONLY_DIST_OPS
30 31

__varname_not_in_block__ = ["lod_tensor_blocking_queue_0"]
32 33 34
__not_shape_var_type__ = [
    core.VarDesc.VarType.READER, core.VarDesc.VarType.STEP_SCOPES
]
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


class Partitioner(object):
    """
    warning:: Partitioner is experimental and subject to change.

    Partitioner convert a program into another program.
    Given a serial program which has been auto completed with shard annotation, the Partitioner 
    convert the serial program into a "distributed" program. The Partitioner will  modify the serial
    program in following two ways, which is also the major difference between serial and distributed program:
        1. partition op: replace a serial op into its corresponding dist op infered from the shard annotation
        2. partition var: if a var is sharded, modify the shape of var according to its shard annotation

    Partitioner is supposed to be call by the auto parallel framework, and not supposed to be directly called by user.
    """

51
    def __init__(self, dist_context, rank_id=0):
52 53
        """
        Args:
54
            dist_context (paddle.fluid.DistributedContext): used to access the distributed_attr of var & op, every Partitioner object could maintain its own DistributedContext member, and partition program base on that shard scenario.
55 56
            rank_id (int): global rank id to which the partitioned distributed program belong.
        """
57
        if not isinstance(dist_context, DistributedContext):
58
            raise TypeError(
59 60
                "dist_context be paddle.fluid.DistributedContext, got %s here" %
                type(dist_context))
61

62
        self._dist_context = dist_context
63 64 65 66
        self._rank_id = rank_id
        self._serial2dist_varname_mapping = {}
        self._dist_varname_suffix = ""

67 68 69
    def partition(self, serial_main_program, serial_startup_program,
                  params_grads):
        if not isinstance(serial_main_program, (Program)):
70
            raise TypeError(
71 72
                "main_program be paddle.fluid.framework.program, got %s here" %
                type(serial_main_program))
73 74

        # check if shard annotated serial program valid
75
        if not self._is_valid_annotated_program(serial_main_program):
76 77 78
            raise RuntimeError(
                "Not all vars or ops are annotated in main program !")

79 80
        # init distop helper
        dist_op_context = self._dist_context.dist_op_context
81 82
        dist_op_context.varname_mapping = self._serial2dist_varname_mapping
        dist_op_context.rank_id = self._rank_id
83

84 85 86 87 88 89
        # partition startup program
        if serial_startup_program == None:
            partitioned_startup_prog = None
        else:
            partitioned_startup_prog = self.partition_startup_program(
                serial_main_program, serial_startup_program)
90
        dist_op_context.dst_startup_program = partitioned_startup_prog
91

92
        # partition main program
93 94
        partitioned_main_prog, partitioned_params_grads = self.partition_main_program(
            serial_main_program, params_grads)
95

96
        return partitioned_main_prog, partitioned_startup_prog, partitioned_params_grads
97

98 99
    def partition_startup_program(self, serial_main_program,
                                  serial_startup_program):
100

101 102 103 104
        if not isinstance(serial_startup_program, (Program)):
            raise TypeError(
                "dist_context be paddle.fluid.framework.program, got %s here" %
                type(serial_startup_program))
105

106 107 108
        partitioned_startup_prog = fluid.Program()
        ref_block = serial_main_program.global_block()
        target_block = partitioned_startup_prog.global_block()
J
JZ-LIANG 已提交
109
        var2shape = {}
110
        temp_varname_map = {}
111

112 113
        # tensors
        for var in serial_startup_program.list_vars():
J
JZ-LIANG 已提交
114 115 116 117 118 119
            assert var.persistable
            new_name = var.name + self._dist_varname_suffix
            temp_varname_map[var.name] = new_name
            target_shape = _partition_var(self._dist_context, ref_block,
                                          target_block, var.name, new_name)
            var2shape[new_name] = target_shape
120 121 122 123 124 125 126 127 128 129

        # ops
        for op in serial_startup_program.global_block().ops:
            # TODO if var not belong to this rank, should be filtered
            output_vars = op.desc.output_arg_names()
            assert len(
                output_vars
            ) == 1, "initializer should output only ONE variable, but got [{}]".format(
                str(op.desc))
            assert temp_varname_map[output_vars[
J
JZ-LIANG 已提交
130
                0]] in var2shape, "try to initialize [{}] which is not a persistable var".format(
131 132 133 134 135 136
                    output_vars[0])
            new_op_desc = target_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            new_op_desc._rename_output(output_vars[0],
                                       temp_varname_map[output_vars[0]])
            new_op_desc._set_attr("shape",
J
JZ-LIANG 已提交
137
                                  var2shape[temp_varname_map[output_vars[0]]])
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
            target_block._sync_with_cpp()

            # set distribute atrribute
            new_op = target_block.ops[-1]
            assert new_op.type == new_op_desc.type()
            assert new_op.desc == new_op_desc
            output_var = target_block.var(output_vars[0])
            output_var_attr = self._dist_context.get_tensor_dist_attr_for_program(
                output_var)
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = output_var_attr.process_mesh
            op_attr.set_output_dims_mapping(output_var.name,
                                            output_var_attr.dims_mapping)
            op_attr.set_input_dims_mapping(output_var.name,
                                           output_var_attr.dims_mapping)
            self._dist_context.set_op_dist_attr_for_program(new_op, op_attr)

        return partitioned_startup_prog

    def partition_main_program(self, serial_main_program, params_and_grads):
158 159 160 161 162 163
        """
        1. partition variables
        2. replace local op with corresponding dist op
        """

        partitioned_main_prog = fluid.Program()
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
        dist_op_context = self._dist_context.dist_op_context
        dist_op_context.dst_main_program = partitioned_main_prog

        for idx in range(self._dist_context.block_state.nblock):
            ref_block = serial_main_program.blocks[idx]

            if idx == 0:
                target_block = partitioned_main_prog.blocks[0]
            else:
                target_block = partitioned_main_prog._create_block(
                    parent_idx=ref_block.parent_idx)
                assert ref_block.idx == target_block.idx
                target_block._set_forward_block_idx(ref_block.forward_block_idx)
            dist_op_context.work_block = target_block
            self.partition_block(ref_block, target_block)

        partitioned_main_prog.current_block_idx = 0

182 183 184 185 186 187 188 189 190 191
        # should reconnect the block_attr ptr to the correct block
        for block_id in range(self._dist_context.block_state.nblock):
            block = partitioned_main_prog.block(block_id)
            for op in block.ops:
                for attr_name in op.all_attrs():
                    if op.attr_type(attr_name) == core.AttrType.BLOCK:
                        relative_id = op._block_attr_id(attr_name)
                        op._set_attr(attr_name,
                                     partitioned_main_prog.block(relative_id))

192 193 194 195 196 197 198 199
        partitioned_params_and_grads = []
        for p, g in params_and_grads:
            assert p.name in self._serial2dist_varname_mapping
            dist_p = self._get_dist_var_by_serial_var(p, partitioned_main_prog)
            if g is None:
                dist_g = None
            else:
                assert g.name in self._serial2dist_varname_mapping
200 201
                dist_g = self._get_dist_var_by_serial_var(
                    g, partitioned_main_prog)
202 203 204 205 206 207 208 209
            partitioned_params_and_grads.append((dist_p, dist_g))

        return partitioned_main_prog, partitioned_params_and_grads

    def partition_block(self, ref_block, target_block):

        dist_op_context = self._dist_context.dist_op_context
        serial_ops = ref_block.ops
210

211 212 213 214 215 216 217 218 219
        last_fwd_op_idx = -1
        for idx, op in enumerate(ref_block.ops):
            if is_loss_op(op):
                last_fwd_op_idx = idx
                break

        if last_fwd_op_idx == -1:
            last_fwd_op_idx = len(ref_block.ops)

220 221 222
        # init mapping
        forward_op_id2forward_op = {}
        for idx in range(len(serial_ops)):
223
            if idx <= last_fwd_op_idx:
224 225
                forward_op_id2forward_op[
                    serial_ops[idx].desc.original_id()] = serial_ops[idx]
226

227
        # partiiton
Z
zhaoyingli 已提交
228
        appended_grad_times = 0
229 230
        for idx, op in enumerate(serial_ops):

Z
zhaoyingli 已提交
231
            op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op)
232 233
            if is_backward_op(op) and (is_forward_op(serial_ops[idx - 1])
                                       or is_loss_op(serial_ops[idx - 1])):
Z
zhaoyingli 已提交
234 235
                if not op_dist_attr.is_recompute:
                    appended_grad_times += 1
236 237 238 239 240

            # partititon input variables
            for serial_input_varname in op.desc.input_arg_names():
                if serial_input_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_input_varname + self._dist_varname_suffix
241 242 243 244
                    if ref_block.has_var(serial_input_varname):
                        _partition_var(self._dist_context, ref_block,
                                       target_block, serial_input_varname,
                                       new_varname)
245 246 247 248 249 250 251 252 253 254
                    else:
                        assert serial_input_varname in __varname_not_in_block__

                    self._serial2dist_varname_mapping[
                        serial_input_varname] = new_varname

            # partition output vars
            for serial_output_varname in op.desc.output_arg_names():
                if serial_output_varname not in self._serial2dist_varname_mapping:
                    new_varname = serial_output_varname + self._dist_varname_suffix
255
                    _partition_var(self._dist_context, ref_block, target_block,
256 257 258 259 260
                                   serial_output_varname, new_varname)
                    self._serial2dist_varname_mapping[
                        serial_output_varname] = new_varname

            # partition op
261
            if is_forward_op(op) or op_dist_attr.is_recompute:
262 263 264 265 266 267 268 269 270 271
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_forward_impl = _get_dist_op_forward_implement(
                    op, self._dist_context)
                dist_op_forward_impl.forward(self._dist_context, **kinputs,
                                             **koutputs)

            elif is_backward_op(op):
                kinputs, koutputs = dist_op_context.prepare_context(op)
                dist_op_backward_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
272 273 274 275 276
                grad_var_to_var = self._dist_context.dist_op_context.grad_var_to_var[
                    appended_grad_times]
                dist_op_backward_impl.backward(
                    self._dist_context, **kinputs, **koutputs,
                    **{"grad_var_to_var": grad_var_to_var})
277
            elif is_optimize_op(op):
278
                # NOTE: BACKWARD_ONLY_DIST_OPS's op_role must 2 because of 1F1B PASS
279
                kinputs, koutputs = dist_op_context.prepare_context(op)
280 281 282
                dist_op_opt_impl = _get_dist_op_backward_implement(
                    op, self._dist_context, forward_op_id2forward_op)
                dist_op_opt_impl.backward(self._dist_context, **kinputs,
283
                                          **koutputs, **{"grad_var_to_var": {}})
284
            else:
285
                raise NotImplementedError(
286 287
                    "partitioner only support forward and backward, optimize ops, but got {}"
                    .format(str(op)))
288

289 290 291 292 293 294
    def _is_valid_annotated_program(self, program):

        # TODO (ZJ-LIANG) should check all block
        ops = program.global_block().ops
        vars_ = program.list_vars()
        op_dist_attrs = [
295
            self._dist_context.get_op_dist_attr_for_program(op) for op in ops
296 297
        ]
        var_dist_attrs = [
298
            self._dist_context.get_tensor_dist_attr_for_program(var)
299
            for var in vars_ if (var.type not in __not_shape_var_type__)
300 301 302 303 304 305 306 307 308
        ]

        all_ops_annotated = all(dist_attr is not None
                                for dist_attr in op_dist_attrs)
        all_vars_annotated = all(dist_attr is not None
                                 for dist_attr in var_dist_attrs)

        return all_ops_annotated and all_vars_annotated

309 310 311 312 313 314 315 316
    def _get_dist_var_by_serial_var(self, serial_var, partitioned_main_prog):

        block_idx = serial_var.block.idx
        target_block = partitioned_main_prog.blocks[block_idx]
        dist_var_name = self._serial2dist_varname_mapping[serial_var.name]
        assert target_block.has_var(dist_var_name)
        return target_block.var(dist_var_name)

317 318 319 320

def _get_dist_shape(var, dist_attr):

    var_shape = var.shape
321 322
    mapping = dist_attr.dims_mapping
    mesh = dist_attr.process_mesh.topology
323 324 325
    if mapping == []:
        return var_shape

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    assert len(var_shape) == len(
        mapping
    ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format(
        var_shape, mapping)
    new_shape = []
    for idx in range(len(var_shape)):
        if var_shape[idx] == -1 or mapping[idx] == -1:
            new_shape.append(var_shape[idx])
        else:
            assert var_shape[idx] % mesh[mapping[
                idx]] == 0, "un-event partition: var_shape[idx]=[{}], mesh[{}]".format(
                    var_shape[idx], mesh[mapping[idx]])
            new_shape.append(var_shape[idx] // mesh[mapping[idx]])

    return new_shape


343
def _partition_parameter(dist_context, src_var, dst_block, dst_varname,
344 345
                         dst_shape):
    # NOTE hack to copied Parameter
346
    # not initialized parameter, need to initialize it
347 348 349 350 351 352 353
    copied_kwargs = {}
    copied_kwargs['trainable'] = src_var.trainable
    copied_kwargs['optimize_attr'] = src_var.optimize_attr
    copied_kwargs['regularizer'] = src_var.regularizer
    copied_kwargs['do_model_average'] = src_var.do_model_average
    copied_kwargs['need_clip'] = src_var.need_clip

354 355 356 357 358 359 360 361 362 363 364
    param = Parameter(block=dst_block,
                      type=src_var.type,
                      name=dst_varname,
                      shape=dst_shape,
                      dtype=src_var.dtype,
                      lod_level=src_var.lod_level,
                      error_clip=src_var.error_clip,
                      stop_gradient=src_var.stop_gradient,
                      is_data=src_var.is_data,
                      belong_to_optimizer=src_var.belong_to_optimizer,
                      **copied_kwargs)
365

366
    return param
367 368


369 370
def _partition_intermediate_var(dist_context, src_var, dst_block, dst_varname,
                                dst_shape):
371 372 373 374 375 376 377 378 379 380
    var = dst_block.create_var(type=src_var.type,
                               name=dst_varname,
                               shape=dst_shape,
                               dtype=src_var.dtype,
                               lod_level=src_var.lod_level,
                               persistable=src_var.persistable,
                               error_clip=src_var.error_clip,
                               stop_gradient=src_var.stop_gradient,
                               is_data=src_var.is_data,
                               belong_to_optimizer=src_var.belong_to_optimizer)
381

382
    return var
383 384


385
def _partition_var(dist_context, src_block, dst_block, src_varname,
386 387 388 389 390 391
                   dst_varname):
    """
    partition include: split + replicate
    """
    src_var = src_block.var(src_varname)

392
    if src_var.type in __not_shape_var_type__:
393
        persist = getattr(src_var, 'persistable', False)
394 395 396 397
        new_var = dst_block.create_var(type=src_var.type,
                                       name=dst_varname,
                                       persistable=persist,
                                       stop_gradient=True)
J
JZ-LIANG 已提交
398
        target_shape = None
399
    else:
400
        dist_attr = dist_context.get_tensor_dist_attr_for_program(src_var)
401 402 403
        target_shape = _get_dist_shape(src_var, dist_attr)

        if isinstance(src_var, Parameter):
404 405
            new_var = _partition_parameter(dist_context, src_var, dst_block,
                                           dst_varname, target_shape)
406
        else:
407 408 409
            new_var = _partition_intermediate_var(dist_context, src_var,
                                                  dst_block, dst_varname,
                                                  target_shape)
410 411 412 413 414 415

    dist_attr = copy.deepcopy(
        dist_context.get_tensor_dist_attr_for_program(src_var))
    assert dist_attr is not None
    dist_context.set_tensor_dist_attr_for_program(new_var, dist_attr)

J
JZ-LIANG 已提交
416
    return target_shape
417 418


419 420 421
def _get_dist_op_backward_implement(backward_op, dist_context,
                                    forward_op_id2forward_op):
    dist_op_context = dist_context.dist_op_context
422 423 424
    if backward_op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
        forward_op_id = dist_op_context.grad_op_id_to_op_id[
            backward_op.desc.original_id()]
425 426 427
        forward_op = forward_op_id2forward_op[forward_op_id]
        forward_op_dist_attr = dist_context.get_op_dist_attr_for_program(
            forward_op)
428 429 430 431 432
        dist_op_impl_container = get_distributed_operator_impl_container(
            forward_op_dist_attr.impl_type)
        dist_op_impl = dist_op_impl_container.get_impl(
            forward_op_dist_attr.impl_idx)
        return dist_op_impl
433

434
    # # NOTE trick for dist ops that only have backward implement
J
JZ-LIANG 已提交
435 436
    if backward_op.type in BACKWARD_ONLY_DIST_OPS:
        op_dist_attr = dist_context.get_op_dist_attr_for_program(backward_op)
437 438
        assert op_dist_attr.impl_idx >= 0
        dist_op_impl = get_distributed_operator_impl_container(
Z
zhaoyingli 已提交
439
            op_dist_attr.impl_type).get_impl(op_dist_attr.impl_idx)
440
        return dist_op_impl
J
JZ-LIANG 已提交
441 442 443

    dist_op = get_distributed_operator_impl_container("default")
    return dist_op.get_impl(0)
444 445 446 447


def _get_dist_op_forward_implement(forward_op, dist_context):
    dist_attr = dist_context.get_op_dist_attr_for_program(forward_op)
448 449 450 451
    dist_op_impl_container = get_distributed_operator_impl_container(
        dist_attr.impl_type)
    dist_op_impl = dist_op_impl_container.get_impl(dist_attr.impl_idx)
    return dist_op_impl