image.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains some common interfaces for image preprocess.
Many users are confused about the image layout. We introduce
the image layout as follows.

- CHW Layout

  - The abbreviations: C=channel, H=Height, W=Width
  - The default layout of image opened by cv2 or PIL is HWC.
    PaddlePaddle only supports the CHW layout. And CHW is simply
    a transpose of HWC. It must transpose the input image.

- Color format: RGB or BGR

  OpenCV use BGR color format. PIL use RGB color format. Both
  formats can be used for training. Noted that, the format should
  be keep consistent between the training and inference peroid.
"""
import numpy as np
try:
    import cv2
except ImportError:
    cv2 = None
import os
import tarfile
import cPickle

__all__ = [
    "load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop",
    "random_crop", "left_right_flip", "simple_transform", "load_and_transform",
    "batch_images_from_tar"
]


def batch_images_from_tar(data_file,
                          dataset_name,
                          img2label,
                          num_per_batch=1024):
    """
    Read images from tar file and batch them into batch file.

    :param data_file: path of image tar file
    :type data_file: string
    :param dataset_name: 'train','test' or 'valid'
    :type dataset_name: string
    :param img2label: a dic with image file name as key 
                    and image's label as value
    :type img2label: dic
    :param num_per_batch: image number per batch file
    :type num_per_batch: int
    :return: path of list file containing paths of batch file
    :rtype: string
    """
    batch_dir = data_file + "_batch"
    out_path = "%s/%s" % (batch_dir, dataset_name)
    meta_file = "%s/%s.txt" % (batch_dir, dataset_name)

    if os.path.exists(out_path):
        return meta_file
    else:
        os.makedirs(out_path)

    tf = tarfile.open(data_file)
    mems = tf.getmembers()
    data = []
    labels = []
    file_id = 0
    for mem in mems:
        if mem.name in img2label:
            data.append(tf.extractfile(mem).read())
            labels.append(img2label[mem.name])
            if len(data) == num_per_batch:
                output = {}
                output['label'] = labels
                output['data'] = data
                cPickle.dump(
                    output,
                    open('%s/batch_%d' % (out_path, file_id), 'w'),
                    protocol=cPickle.HIGHEST_PROTOCOL)
                file_id += 1
                data = []
                labels = []
    if len(data) > 0:
        output = {}
        output['label'] = labels
        output['data'] = data
        cPickle.dump(
            output,
            open('%s/batch_%d' % (out_path, file_id), 'w'),
            protocol=cPickle.HIGHEST_PROTOCOL)

    with open(meta_file, 'a') as meta:
        for file in os.listdir(out_path):
            meta.write(os.path.abspath("%s/%s" % (out_path, file)) + "\n")
    return meta_file


def load_image_bytes(bytes, is_color=True):
    """
    Load an color or gray image from bytes array.

    Example usage:
    
    .. code-block:: python

        with open('cat.jpg') as f:
            im = load_image_bytes(f.read())

    :param bytes: the input image bytes array.
    :type bytes: str
    :param is_color: If set is_color True, it will load and
                     return a color image. Otherwise, it will
                     load and return a gray image.
    :type is_color: bool
    """
    flag = 1 if is_color else 0
    file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8)
    img = cv2.imdecode(file_bytes, flag)
    return img


def load_image(file, is_color=True):
    """
    Load an color or gray image from the file path.

    Example usage:
    
    .. code-block:: python

        im = load_image('cat.jpg')

    :param file: the input image path.
    :type file: string
    :param is_color: If set is_color True, it will load and
                     return a color image. Otherwise, it will
                     load and return a gray image.
    :type is_color: bool
    """
    # cv2.IMAGE_COLOR for OpenCV3
    # cv2.CV_LOAD_IMAGE_COLOR for older OpenCV Version
    # cv2.IMAGE_GRAYSCALE for OpenCV3
    # cv2.CV_LOAD_IMAGE_GRAYSCALE for older OpenCV Version
    # Here, use constant 1 and 0
    # 1: COLOR, 0: GRAYSCALE
    flag = 1 if is_color else 0
    im = cv2.imread(file, flag)
    return im


def resize_short(im, size):
    """ 
    Resize an image so that the length of shorter edge is size.

    Example usage:
    
    .. code-block:: python

        im = load_image('cat.jpg')
        im = resize_short(im, 256)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param size: the shorter edge size of image after resizing.
    :type size: int
    """
    h, w = im.shape[:2]
    h_new, w_new = size, size
    if h > w:
        h_new = size * h / w
    else:
        w_new = size * w / h
185
    im = cv2.resize(im, (w_new, h_new), interpolation=cv2.INTER_CUBIC)
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    return im


def to_chw(im, order=(2, 0, 1)):
    """
    Transpose the input image order. The image layout is HWC format
    opened by cv2 or PIL. Transpose the input image to CHW layout
    according the order (2,0,1).

    Example usage:
    
    .. code-block:: python

        im = load_image('cat.jpg')
        im = resize_short(im, 256)
        im = to_chw(im)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param order: the transposed order.
    :type order: tuple|list 
    """
    assert len(im.shape) == len(order)
    im = im.transpose(order)
    return im


def center_crop(im, size, is_color=True):
    """
    Crop the center of image with size.

    Example usage:
    
    .. code-block:: python

        im = center_crop(im, 224)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param size: the cropping size.
    :type size: int
    :param is_color: whether the image is color or not.
    :type is_color: bool
    """
    h, w = im.shape[:2]
    h_start = (h - size) / 2
    w_start = (w - size) / 2
    h_end, w_end = h_start + size, w_start + size
    if is_color:
        im = im[h_start:h_end, w_start:w_end, :]
    else:
        im = im[h_start:h_end, w_start:w_end]
    return im


def random_crop(im, size, is_color=True):
    """
    Randomly crop input image with size.

    Example usage:
    
    .. code-block:: python

        im = random_crop(im, 224)
    
    :param im: the input image with HWC layout.
    :type im: ndarray
    :param size: the cropping size.
    :type size: int
    :param is_color: whether the image is color or not.
    :type is_color: bool
    """
    h, w = im.shape[:2]
    h_start = np.random.randint(0, h - size + 1)
    w_start = np.random.randint(0, w - size + 1)
    h_end, w_end = h_start + size, w_start + size
    if is_color:
        im = im[h_start:h_end, w_start:w_end, :]
    else:
        im = im[h_start:h_end, w_start:w_end]
    return im


def left_right_flip(im, is_color=True):
    """
    Flip an image along the horizontal direction.
    Return the flipped image.

    Example usage:
    
    .. code-block:: python

        im = left_right_flip(im)
    
    :param im: input image with HWC layout or HW layout for gray image
    :type im: ndarray
    :param is_color: whether input image is color or not
    :type is_color: bool
    """
    if len(im.shape) == 3 and is_color:
        return im[:, ::-1, :]
    else:
        return im[:, ::-1]


def simple_transform(im,
                     resize_size,
                     crop_size,
                     is_train,
                     is_color=True,
                     mean=None):
    """
    Simply data argumentation for training. These operations include
    resizing, croping and flipping.

    Example usage:
    
    .. code-block:: python

        im = simple_transform(im, 256, 224, True)

    :param im: The input image with HWC layout.
    :type im: ndarray
    :param resize_size: The shorter edge length of the resized image.
    :type resize_size: int
    :param crop_size: The cropping size.
    :type crop_size: int
    :param is_train: Whether it is training or not.
    :type is_train: bool
    :param is_color: whether the image is color or not.
    :type is_color: bool
    :param mean: the mean values, which can be element-wise mean values or 
                 mean values per channel.
    :type mean: numpy array | list
    """
    im = resize_short(im, resize_size)
    if is_train:
        im = random_crop(im, crop_size, is_color=is_color)
        if np.random.randint(2) == 0:
            im = left_right_flip(im, is_color)
    else:
        im = center_crop(im, crop_size, is_color=is_color)
    if len(im.shape) == 3:
        im = to_chw(im)

    im = im.astype('float32')
    if mean is not None:
        mean = np.array(mean, dtype=np.float32)
        # mean value, may be one value per channel 
        if mean.ndim == 1 and is_color:
            mean = mean[:, np.newaxis, np.newaxis]
        elif mean.ndim == 1:
            mean = mean
        else:
            # elementwise mean
            assert len(mean.shape) == len(im)
        im -= mean

    return im


def load_and_transform(filename,
                       resize_size,
                       crop_size,
                       is_train,
                       is_color=True,
                       mean=None):
    """
    Load image from the input file `filename` and transform image for
    data argumentation. Please refer to the `simple_transform` interface
    for the transform operations.

    Example usage:
    
    .. code-block:: python

        im = load_and_transform('cat.jpg', 256, 224, True)

    :param filename: The file name of input image.
    :type filename: string
    :param resize_size: The shorter edge length of the resized image.
    :type resize_size: int
    :param crop_size: The cropping size.
    :type crop_size: int
    :param is_train: Whether it is training or not.
    :type is_train: bool
    :param is_color: whether the image is color or not.
    :type is_color: bool
    :param mean: the mean values, which can be element-wise mean values or 
                 mean values per channel.
    :type mean: numpy array | list
    """
    im = load_image(filename, is_color)
    im = simple_transform(im, resize_size, crop_size, is_train, is_color, mean)
    return im