uniform_random_op.cc 3.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

Y
Yu Yang 已提交
15 16 17 18
#include <random>
#include <type_traits>
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
Y
Yu Yang 已提交
19 20 21

namespace paddle {
namespace operators {
Y
Yu Yang 已提交
22 23 24 25 26 27 28 29

// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
class CPUUniformRandomKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
30
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed =
        static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::uniform_real_distribution<T> dist(
        static_cast<T>(context.op_.GetAttr<float>("min")),
        static_cast<T>(context.op_.GetAttr<float>("max")));
    for (ssize_t i = 0; i < framework::product(tensor->dims()); ++i) {
      data[i] = dist(engine);
    }
  }
};

class UniformRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
49 50 51
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Y
Yu Yang 已提交
52
 protected:
Y
Yu Yang 已提交
53
  void InferShape(const framework::InferShapeContext& ctx) const override {
Y
Yu Yang 已提交
54 55
    PADDLE_ENFORCE(GetAttr<float>("min") < GetAttr<float>("max"),
                   "uniform_random's min must less then max");
Y
Yu Yang 已提交
56
    auto* tensor = ctx.Output<framework::Tensor>("Out");
Y
Yu Yang 已提交
57 58 59 60 61
    auto dims = GetAttr<std::vector<int>>("dims");
    tensor->Resize(framework::make_ddim(dims));
  }
};

Y
Yu Yang 已提交
62
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
Y
Yu Yang 已提交
63
 public:
Y
Yu Yang 已提交
64 65 66
  UniformRandomOpMaker(framework::OpProto* proto,
                       framework::OpAttrChecker* op_checker)
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yu Yang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    AddOutput("Out", "The output tensor of uniform random op");
    AddComment(R"DOC(Uniform random operator.

Used to initialize tensor with uniform random generator.
)DOC");
    AddAttr<std::vector<int>>("dims", "the dimension of random tensor");
    AddAttr<float>("min", "Minimum value of uniform random").SetDefault(-1.0f);
    AddAttr<float>("max", "Maximun value of uniform random").SetDefault(1.0f);
    AddAttr<int>("seed",
                 "Random seed of uniform random. "
                 "0 means generate a seed by system")
        .SetDefault(0);
  }
};
}  // namespace operators
}  // namespace paddle

Y
Yu Yang 已提交
84 85 86 87
REGISTER_OP(uniform_random, paddle::operators::UniformRandomOp,
            paddle::operators::UniformRandomOpMaker);
REGISTER_OP_CPU_KERNEL(uniform_random,
                       paddle::operators::CPUUniformRandomKernel<float>);