test_custom_optional.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest

import numpy as np
from utils import extra_cc_args, extra_nvcc_args, paddle_includes

import paddle
22
from paddle import static
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
from paddle.utils.cpp_extension import get_build_directory, load
from paddle.utils.cpp_extension.extension_utils import run_cmd

# Because Windows don't use docker, the shared lib already exists in the
# cache dir, it will not be compiled again unless the shared lib is removed.
file = '{}\\custom_optional\\custom_optional.pyd'.format(get_build_directory())
if os.name == 'nt' and os.path.isfile(file):
    cmd = 'del {}'.format(file)
    run_cmd(cmd, True)

# Compile and load custom op Just-In-Time.
custom_optional = load(
    name='custom_optional',
    sources=['custom_optional.cc'],
    extra_include_paths=paddle_includes,  # add for Coverage CI
    extra_cxx_cflags=extra_cc_args,  # test for cflags
    extra_cuda_cflags=extra_nvcc_args,  # test for cflags
    verbose=True,
)


def optional_dynamic_add(phi_func, device, dtype, np_x, np_y):
    paddle.set_device(device)
    x = paddle.to_tensor(np_x, dtype=dtype, stop_gradient=False)

    if np_y is not None:
        y = paddle.to_tensor(np_y, dtype=dtype, stop_gradient=False)
    else:
        y = x
    if phi_func:
        out = custom_optional.custom_add(x, y if np_y is not None else None)
    else:
        out = paddle.add(x, y)

    out.backward()
    return x.numpy(), out.numpy(), x.grad.numpy()


def optional_static_add(phi_func, device, dtype, np_x, np_y):
    paddle.enable_static()
    paddle.set_device(device)
    with static.scope_guard(static.Scope()):
        with static.program_guard(static.Program()):
            x = static.data(name="x", shape=[None, np_x.shape[1]], dtype=dtype)
            x.stop_gradient = False
            if np_y is not None:
                y = static.data(
                    name="y", shape=[None, np_x.shape[1]], dtype=dtype
                )
                y.stop_gradient = False
                feed_dict = {
                    "x": np_x.astype(dtype),
                    "y": np_y.astype(dtype),
                }
            else:
                y = x
                feed_dict = {
                    "x": np_x.astype(dtype),
                }
            if phi_func:
                out = custom_optional.custom_add(
                    x, y if np_y is not None else None
                )
            else:
                out = paddle.add(x, y)

            mean_out = paddle.mean(out)
            static.append_backward(mean_out)

            exe = static.Executor()
            exe.run(static.default_startup_program())

            x_v, out_v, x_grad_v = exe.run(
                static.default_main_program(),
                feed=feed_dict,
                fetch_list=[
                    x.name,
                    out.name,
                    x.name + "@GRAD",
                ],
            )
    paddle.disable_static()
    return x_v, out_v, x_grad_v


108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
def optional_vector_dynamic_add(phi_func, device, dtype, np_x, np_inputs):
    paddle.set_device(device)
    x = paddle.to_tensor(np_x, dtype=dtype, stop_gradient=False)

    if np_inputs is not None:
        inputs = [
            paddle.to_tensor(np_input, dtype=dtype, stop_gradient=False)
            for np_input in np_inputs
        ]
        if phi_func:
            out = custom_optional.custom_add_vec(x, inputs)
        else:
            out = paddle.add(x, inputs[0])
            for input in inputs[1:]:
                out = paddle.add(out, input)
    else:
        if phi_func:
            out = custom_optional.custom_add_vec(x, None)
        else:
            out = paddle.add(x, x)

    out.backward()
    return x.numpy(), out.numpy(), x.grad.numpy()


def optional_vector_static_add(phi_func, device, dtype, np_x, np_inputs):
    paddle.enable_static()
    paddle.set_device(device)
    with static.scope_guard(static.Scope()):
        with static.program_guard(static.Program()):
            x = static.data(name="x", shape=[None, np_x.shape[1]], dtype=dtype)
            x.stop_gradient = False
            feed_dict = {"x": np_x.astype(dtype)}
            if np_inputs is not None:
                y1 = static.data(
                    name="y1", shape=[None, np_x.shape[1]], dtype=dtype
                )
                y1.stop_gradient = False
                y2 = static.data(
                    name="y2", shape=[None, np_x.shape[1]], dtype=dtype
                )
                y2.stop_gradient = False
                feed_dict.update(
                    {
                        "y1": np_inputs[0].astype(dtype),
                        "y2": np_inputs[1].astype(dtype),
                    }
                )
                if phi_func:
                    out = custom_optional.custom_add_vec(x, [y1, y2])
                else:
                    out = paddle.add(x, y1)
                    out = paddle.add(out, y2)
            else:
                if phi_func:
                    out = custom_optional.custom_add_vec(x, None)
                else:
                    out = paddle.add(x, x)

            mean_out = paddle.mean(out)
            static.append_backward(mean_out)

            exe = static.Executor()
            exe.run(static.default_startup_program())

            x_v, out_v, x_grad_v = exe.run(
                static.default_main_program(),
                feed=feed_dict,
                fetch_list=[
                    x.name,
                    out.name,
                    x.name + "@GRAD",
                ],
            )
    paddle.disable_static()
    return x_v, out_v, x_grad_v


186 187 188 189 190 191
class TestCustomOptionalJit(unittest.TestCase):
    def setUp(self):
        self.dtypes = ['float32', 'float64']
        self.devices = ['cpu']
        self.np_x = np.random.random((3, 2)).astype("float32")
        self.np_y = np.random.random((3, 2)).astype("float32")
192 193 194 195
        self.np_inputs = [
            np.random.random((3, 2)).astype("float32"),
            np.random.random((3, 2)).astype("float32"),
        ]
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

    def check_output(self, out, pd_out, name):
        np.testing.assert_array_equal(
            out,
            pd_out,
            err_msg='custom op {}: {},\n paddle api {}: {}'.format(
                name, out, name, pd_out
            ),
        )

    def check_output_allclose(self, out, pd_out, name):
        np.testing.assert_allclose(
            out,
            pd_out,
            rtol=5e-5,
            atol=1e-2,
            err_msg='custom op {}: {},\n paddle api {}: {}'.format(
                name, out, name, pd_out
            ),
        )

217
    def test_optional_static_add(self):
218 219
        for device in self.devices:
            for dtype in self.dtypes:
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
                for np_y in [None, self.np_y]:
                    (pd_x, pd_out, pd_x_grad,) = optional_static_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    (phi_x, phi_out, phi_x_grad,) = optional_static_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )

                    self.check_output(phi_x, pd_x, "x")
                    self.check_output(phi_out, pd_out, "out")
                    self.check_output(phi_x_grad, pd_x_grad, "x_grad")
239

240
    def test_optional_dynamic_add(self):
241 242
        for device in self.devices:
            for dtype in self.dtypes:
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
                for np_y in [None, self.np_y]:
                    (pd_x, pd_out, pd_x_grad,) = optional_dynamic_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    (phi_x, phi_out, phi_x_grad,) = optional_dynamic_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
258

259 260 261
                    self.check_output(phi_x, pd_x, "x")
                    self.check_output(phi_out, pd_out, "out")
                    self.check_output(phi_x_grad, pd_x_grad, "x_grad")
262

263
    def test_optional_vector_static_add(self):
264 265
        for device in self.devices:
            for dtype in self.dtypes:
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
                for np_y in [None, self.np_inputs]:
                    (phi_x, phi_out, phi_x_grad,) = optional_vector_static_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    (pd_x, pd_out, pd_x_grad,) = optional_vector_static_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
281

282 283 284
                    self.check_output(phi_x, pd_x, "x")
                    self.check_output(phi_out, pd_out, "out")
                    self.check_output(phi_x_grad, pd_x_grad, "x_grad")
285

286
    def test_optional_vector_dynamic_add(self):
287 288
        for device in self.devices:
            for dtype in self.dtypes:
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                for np_y in [None, self.np_inputs]:
                    (phi_x, phi_out, phi_x_grad,) = optional_vector_dynamic_add(
                        True,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
                    (pd_x, pd_out, pd_x_grad,) = optional_vector_dynamic_add(
                        False,
                        device,
                        dtype,
                        self.np_x,
                        np_y,
                    )
304

305 306 307
                    self.check_output(phi_x, pd_x, "x")
                    self.check_output(phi_out, pd_out, "out")
                    self.check_output(phi_x_grad, pd_x_grad, "x_grad")
308 309 310 311


if __name__ == "__main__":
    unittest.main()