creation.py 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops
17 18 19
from paddle.fluid.framework import core, dygraph_only
from paddle.fluid.framework import _current_expected_place, _get_paddle_place
from paddle.tensor import to_tensor, max
20
from paddle.fluid.data_feeder import convert_dtype
21 22
from paddle import in_dynamic_mode
from paddle.fluid.layer_helper import LayerHelper
23

24 25
import numpy as np

26 27 28 29 30 31 32 33 34 35 36 37 38
__all__ = [
    'sparse_coo_tensor',
    'sparse_csr_tensor',
]


def _handle_dtype(data, dtype):
    if dtype:
        if convert_dtype(dtype) != convert_dtype(data.dtype):
            return data.astype(convert_dtype(dtype))
    return data


39
def _infer_dense_shape(indices, values):
40 41 42
    assert len(indices.shape) == 2
    lens = max(indices, axis=1)
    lens = lens + 1
43 44 45 46
    lens = lens.numpy()
    if len(values.shape) > 1:
        lens = np.append(lens, values.shape[1:])
    return list(lens)
47 48


49 50 51 52
def _get_place(place):
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()
53
    elif not isinstance(
54 55
        place, (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)
    ):
56 57 58 59 60 61
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )
    return place


62 63 64 65 66 67 68
def _check_indices_dtype(dtype):
    if dtype not in [paddle.int8, paddle.int16, paddle.int32, paddle.int64]:
        raise TypeError(
            "the dtype of indices must be 'int8' or 'int16' or 'int32' or 'int64'"
        )


69 70 71
def sparse_coo_tensor(
    indices, values, shape=None, dtype=None, place=None, stop_gradient=True
):
72
    r"""
73
    Constructs a sparse ``paddle.Tensor`` in coordinate format according to the indices
74 75 76 77 78 79 80 81
    and values of the specified non-zero elements.

    Args:
        indices(list|tuple|ndarray|Tensor): the indices of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. The indices must be 2-D.
        values(list|tuple|ndarray|Tensor): Initial values for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
82
            original dense tensor. If not provided the smallest shape will be inferred to
83
            hold all elements.
84
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
85
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
86
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
87
            except for python float number which gets dtype from ``get_default_type`` .
88 89 90
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``indices`` and ``values`` .

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
106
            dense_shape = [3, 3]
107
            coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
108 109 110 111 112 113 114
            # print(coo)
            # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       indices=[[0, 1, 2],
            #                [1, 2, 0]],
            #       values=[1., 2., 3.])
    """

115 116
    if in_dynamic_mode():
        place = _get_place(place)
117

118
        if not isinstance(indices, core.eager.Tensor):
119 120 121
            indices = to_tensor(
                indices, dtype=None, place=place, stop_gradient=True
            )
122 123 124 125
        if not isinstance(values, core.eager.Tensor):
            values = to_tensor(values, dtype, place, stop_gradient)
        if len(indices.shape) != 2:
            raise ValueError("'indices' must be 2-D.")
126

127 128
        nnz = indices.shape[1]
        sparse_dim = indices.shape[0]
129

130
        _check_indices_dtype(indices.dtype)
131

132 133
        if nnz != values.shape[0]:
            raise ValueError(
134 135 136 137
                "the indices and values must have same number of non-zero, but get {} and {}".format(
                    nnz, values.shape[0]
                )
            )
138

139
        dense_dim = len(values.shape) - 1
140

141 142
        if not indices.place._equals(place):
            indices = indices._copy_to(place, False)
143

144 145 146 147
        if not values.place._equals(place):
            values = values._copy_to(place, False)
        values = _handle_dtype(values, dtype)
        values.stop_gradient = stop_gradient
148

149
        min_shape = _infer_dense_shape(indices, values)
150

151 152 153 154 155 156
        if shape is None:
            shape = min_shape
        else:
            if shape < min_shape:
                raise ValueError(
                    "the minimun shape required is {}, but get {}".format(
157 158 159
                        min_shape, shape
                    )
                )
160 161
            if len(shape) != sparse_dim + dense_dim:
                raise ValueError(
162 163 164 165
                    "the number of dimensions(len(shape) must be sparse_dim({}) + dense_dim({}), but get {}".format(
                        sparse_dim, dense_dim, len(shape)
                    )
                )
166

167 168 169 170 171 172 173 174 175 176
        return _C_ops.sparse_sparse_coo_tensor(values, indices, shape)

    else:
        op_type = 'sparse_sparse_coo_tensor'
        inputs = {'values': values, 'indices': indices}
        if shape[0] is None:
            shape[0] = -1
        attrs = {'dense_shape': shape}
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(dtype)
177 178 179
        helper.append_op(
            type=op_type, inputs=inputs, outputs={'out': out}, attrs=attrs
        )
180
        return out
181 182


183
# TODO: need to support shape is None
184
@dygraph_only
185 186 187
def sparse_csr_tensor(
    crows, cols, values, shape, dtype=None, place=None, stop_gradient=True
):
188
    r"""
189
    Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the
190
    ``crows``, ``cols`` and ``values``.
191
    Currently, the crows and cols of each batch must be incrementd.
192 193

    Args:
194 195 196
        crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the
            starting position of the first non-zero element of each row in values.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor.
197
        cols(list|tuple|ndarray|Tensor): 1-D array, the column of non-zero elements.
198
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor.
199 200 201
        values(list|tuple|ndarray|Tensor): 1-D array, the non-zero elements.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
202
            original dense tensor.
203
            hold all elements.
204
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
205
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
206
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
207
            except for python float number which gets dtype from ``get_default_type`` .
208 209 210
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``crows``, ``cols`` and ``values`` .

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
228
            csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
229 230 231 232 233 234
            # print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1, 2, 3, 4, 5])
    """
235 236 237

    place = _get_place(place)

238 239 240 241 242 243
    if not isinstance(crows, core.eager.Tensor):
        crows = to_tensor(crows, dtype=None, place=place, stop_gradient=True)
    if not isinstance(cols, core.eager.Tensor):
        cols = to_tensor(cols, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
244 245 246 247 248

    _check_indices_dtype(crows.dtype)
    _check_indices_dtype(cols.dtype)

    if len(shape) != 2 and len(shape) != 3:
249
        raise ValueError(
250 251 252 253
            "SparseCsrTensor only support 2-D or 3-D matrix. but get shape {}".format(
                shape
            )
        )
Z
zhangkaihuo 已提交
254
    rows = shape[len(shape) - 2]
255

256
    if not crows.place._equals(place):
257
        crows = crows._copy_to(place, False)
258 259

    if not cols.place._equals(place):
260
        cols = cols._copy_to(place, False)
261 262

    if not values.place._equals(place):
263 264
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
265
    values.stop_gradient = stop_gradient
266 267 268 269

    if len(crows.shape) != 1 or len(cols.shape) != 1 or len(values.shape) != 1:
        raise ValueError("The 'crows', 'cols' and 'values' must be 1-D.")

270
    if len(cols) != len(values):
271 272 273
        raise ValueError("the length of cols must be same as length of values")

    if len(shape) == 2:
Z
zhangkaihuo 已提交
274
        if crows.shape[0] != rows + 1:
275
            raise ValueError(
276 277 278 279
                "The length({}) of crows must be equal to the rows({})+1 of matrix.".format(
                    crows.shape[0], rows
                )
            )
280 281 282 283 284
        if crows[0] != 0:
            raise ValueError("the 0th value of crows must be 0")

        if crows[-1] != values.shape[0]:
            raise ValueError(
285 286
                "the last value of crows must be equal the number of non-zero"
            )
287
    else:
Z
zhangkaihuo 已提交
288
        if crows.shape[0] % (rows + 1) != 0:
289
            raise ValueError(
290 291 292 293
                "The length({}) of crows must be divisible the rows({})+1 of matrix.".format(
                    crows.shape[0], rows
                )
            )
294
    # TODO(zkh2016): check whether the value in crows and cols is legal
295

296 297 298
    return core.eager.sparse_csr_tensor(
        crows, cols, values, shape, stop_gradient
    )