testTrainer.py 2.1 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
E
emailweixu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.config_parser import parse_config
from paddle.trainer.config_parser import logger
from py_paddle import swig_paddle
import util

20

E
emailweixu 已提交
21
def main():
22
    trainer_config = parse_config("./testTrainConfig.py", "")
E
emailweixu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    model = swig_paddle.GradientMachine.createFromConfigProto(
        trainer_config.model_config)
    trainer = swig_paddle.Trainer.create(trainer_config, model)
    trainer.startTrain()
    for train_pass in xrange(2):
        trainer.startTrainPass()
        num = 0
        cost = 0
        while True:  # Train one batch
            batch_size = 1000
            data, atEnd = util.loadMNISTTrainData(batch_size)
            if atEnd:
                break
            trainer.trainOneDataBatch(batch_size, data)
            outs = trainer.getForwardOutput()
            cost += sum(outs[0]['value'])
            num += batch_size
        trainer.finishTrainPass()
        logger.info('train cost=%f' % (cost / num))

        trainer.startTestPeriod()
        num = 0
        cost = 0
        while True:  # Test one batch
            batch_size = 1000
            data, atEnd = util.loadMNISTTrainData(batch_size)
            if atEnd:
                break
            trainer.testOneDataBatch(batch_size, data)
            outs = trainer.getForwardOutput()
            cost += sum(outs[0]['value'])
            num += batch_size
        trainer.finishTestPeriod()
        logger.info('test cost=%f' % (cost / num))

    trainer.finishTrain()
59

E
emailweixu 已提交
60 61 62 63

if __name__ == '__main__':
    swig_paddle.initPaddle("--use_gpu=0", "--trainer_count=1")
    main()