crop_op.h 4.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15

#pragma once
S
Siddharth Goyal 已提交
16 17
#include <utility>
#include <vector>
Y
Yi Wang 已提交
18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/strided_memcpy.h"
W
wanghaoshuang 已提交
21 22

namespace paddle {
23
namespace operators {  // Internal
W
wanghaoshuang 已提交
24 25 26 27

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
28 29
using framework::Tensor;

F
stash  
fengjiayi 已提交
30 31 32 33 34 35 36 37 38 39 40 41
static std::vector<int> GetOffsets(const framework::ExecutionContext& ctx) {
  std::vector<int> res;
  int rank = ctx.Input<Tensor>("X")->dims().size();
  if (ctx.HasInput("Offsets")) {
    PADDLE_ENFORCE(ctx.Attr<std::vector<int>>("offsets").empty(),
                   "Input 'Offsets' and attribute 'offsets' should not be used "
                   "at the same time.");
    const auto* offsets_tensor = ctx.Input<Tensor>("Offsets");
    PADDLE_ENFORCE_EQ(offsets_tensor->dims().size(), 1);
    PADDLE_ENFORCE_EQ(
        rank, offsets_tensor->dims()[0],
        "Offsets size should be equal to dimension size of input tensor.");
F
fengjiayi 已提交
42 43 44 45 46 47 48 49
    const int* offsets_data;
    framework::Tensor cpu_tmp_tensor;
    if (platform::is_cpu_place(offsets_tensor->place())) {
      offsets_data = offsets_tensor->data<int>();
    } else {
      framework::TensorCopySync(*offsets_tensor, platform::CPUPlace(),
                                &cpu_tmp_tensor);
      offsets_data = cpu_tmp_tensor.data<int>();
F
stash  
fengjiayi 已提交
50
    }
F
fengjiayi 已提交
51
    res = std::vector<int>(offsets_data, offsets_data + rank);
F
stash  
fengjiayi 已提交
52 53 54 55 56 57 58 59 60
  } else {
    res = ctx.Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
        rank, res.size(),
        "Offsets size should be equal to dimension size of input tensor.");
  }
  return res;
}

61
template <typename T>
Y
Yu Yang 已提交
62
class CropKernel : public framework::OpKernel<T> {
63 64 65 66
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out = context.Output<Tensor>("Out");
W
wanghaoshuang 已提交
67
    const T* x_data = x->data<T>();
68
    T* out_data = out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
69 70
    auto x_stride = framework::stride(x->dims());
    auto out_stride = framework::stride(out->dims());
F
stash  
fengjiayi 已提交
71
    auto offsets = GetOffsets(context);
72
    int64_t offset = 0;
Q
qiaolongfei 已提交
73
    for (size_t i = 0; i < offsets.size(); ++i) {
74 75 76 77 78 79
      offset += (x_stride[i] * offsets[i]);
    }
    StridedMemcpy<T>(context.device_context(), x_data + offset, x_stride,
                     out->dims(), out_stride, out_data);
  }
};
W
wanghaoshuang 已提交
80

Q
QI JUN 已提交
81
template <typename DeviceContext, typename T, size_t D>
W
wanghaoshuang 已提交
82
void CropGradFunction(const framework::ExecutionContext& context) {
83
  auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
84
  if (d_x != nullptr) {
85
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
86
    d_x->mutable_data<T>(context.GetPlace());
F
stash  
fengjiayi 已提交
87
    auto offsets = GetOffsets(context);
88
    Eigen::array<std::pair<int, int>, D> paddings;
Q
qiaolongfei 已提交
89
    for (size_t i = 0; i < D; ++i) {
90
      paddings[i].first = offsets[i];
W
wanghaoshuang 已提交
91
      paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
92 93 94
    }
    auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
    auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
Q
QI JUN 已提交
95 96
    d_x_tensor.device(
        *context.template device_context<DeviceContext>().eigen_device()) =
97
        d_out_tensor.pad(paddings, 0);
W
wanghaoshuang 已提交
98 99 100
  }
}

Q
QI JUN 已提交
101
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
102
class CropGradKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
103 104
 public:
  void Compute(const framework::ExecutionContext& context) const override {
105
    size_t rank =
106
        context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
107
    switch (rank) {
W
wanghaoshuang 已提交
108
      case 1:
Q
QI JUN 已提交
109
        CropGradFunction<DeviceContext, T, 1>(context);
W
wanghaoshuang 已提交
110 111
        break;
      case 2:
Q
QI JUN 已提交
112
        CropGradFunction<DeviceContext, T, 2>(context);
W
wanghaoshuang 已提交
113 114
        break;
      case 3:
Q
QI JUN 已提交
115
        CropGradFunction<DeviceContext, T, 3>(context);
W
wanghaoshuang 已提交
116 117
        break;
      case 4:
Q
QI JUN 已提交
118
        CropGradFunction<DeviceContext, T, 4>(context);
W
wanghaoshuang 已提交
119 120
        break;
      case 5:
Q
QI JUN 已提交
121
        CropGradFunction<DeviceContext, T, 5>(context);
W
wanghaoshuang 已提交
122 123
        break;
      case 6:
Q
QI JUN 已提交
124
        CropGradFunction<DeviceContext, T, 6>(context);
W
wanghaoshuang 已提交
125 126
        break;
      default:
127 128
        PADDLE_THROW(
            "CropOp only support tensors with no more than 6 dimensions.");
W
wanghaoshuang 已提交
129 130 131 132 133 134
    }
  }
};

}  // namespace operators
}  // namespace paddle