fused_transformer.py 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
18
from paddle.fluid import core, dygraph_utils
19 20 21 22 23
from paddle import _C_ops

__all__ = []


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def _verify_dropout_rate(dropout_rate):
    if not isinstance(dropout_rate, (float, int)):
        raise TypeError("dropout_rate argument should be a number")
    if dropout_rate < 0 or dropout_rate > 1:
        raise ValueError("dropout_rate argument should between 0 and 1")


def fused_feedforward(x,
                      linear1_weight,
                      linear2_weight,
                      linear1_bias=None,
                      linear2_bias=None,
                      ln1_scale=None,
                      ln1_bias=None,
                      ln2_scale=None,
                      ln2_bias=None,
                      dropout1_rate=0.5,
                      dropout2_rate=0.5,
                      activation="relu",
                      ln1_epsilon=1e-5,
                      ln2_epsilon=1e-5,
                      pre_layer_norm=False,
                      name=None):
    """
    This is a fusion operator to compute feed forward layer in transformer model architecture.
    This operator only supports running on GPU. The function of the operator is consistent with
    the following pseudo code:

    .. code-block:: python

        residual = src;
        if pre_layer_norm:
            src = layer_norm(src)
        src = linear(dropout(activation(dropout(linear(src)))))
        if not pre_layer_norm:
            src = layer_norm(out)

    Args:
        x (Tensor): the input tensor could be 3-D tensor, the input data type could be float16, float32 or float64, the shape is`[batch\_size, sequence\_length, d_model]`.
        linear1_weight (Tensor): The weight of first linear, the data type is same as `x`, the shape is `[d\_model, dim\_feedforward]`.
        linear2_weight (Tensor): The weight of second linear, the data type is same as `x`, the shape is `[dim\_feedforward, d\_model]`.
        linear1_bias (Tensor, optional): The bias of first linear, the data type is same as `x`, the shape is `[dim_feedforward]`. Default None.
        linear2_bias (Tensor, optional): The bias of second linear, the data type is same as `x`, the shape is `[d_model]`. Default None.
        ln1_scale (Tensor, optional): the weight of first layer_norm, the data type is float32 or float64, the shape is same as `x`. Default None.
        ln1_bias (Tensor, optional): The bias of first layer_norm, the data type is float32 or float64, the shape is `[d\_model]`. Default None.
        ln2_scale (Tensor, optional): The weight of second layer_norm, the data type is float32 or float64, the shape is same as `x`. Default None.
        ln2_bias (Tensor, optional): The bias of second layer_norm, the data type is float32 or float64, the shape is `[d\_model]`. Default None.
        dropout1_rate (float, optional): The first dropout probability of setting units to zero. Default 0.5.
        dropout2_rate (float, optional): The second dropout probability of setting units to zero. Default 0.5.
        activation (str, optional): The activation. Default "relu".
        ln1_epsilon (float, optional): Small float of first layer_norm added to denominator to avoid dividing by zero. Default is 1e-5.
        ln2_epsilon (float, optional): Small float of second layer_norm added to denominator to avoid dividing by zero. Default is 1e-5.
        pre_layer_norm (bool, optional): add layer_norm in the pre-processing stage or post-processing state.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The output Tensor, the data type and shape is same as `x`.

    Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            import numpy as np
            x_data = np.random.random((1, 8, 8)).astype("float32")
            linear1_weight_data = np.random.random((8, 8)).astype("float32")
            linear2_weight_data = np.random.random((8, 8)).astype("float32")
            x = paddle.to_tensor(x_data)
            linear1_weight = paddle.to_tensor(linear1_weight_data)
            linear2_weight = paddle.to_tensor(linear2_weight_data)
94
            out = paddle.incubate.nn.functional.fused_feedforward(x, linear1_weight, linear2_weight)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            print(out.numpy().shape)
            # (1, 8, 8)
    """
    _verify_dropout_rate(dropout1_rate)
    _verify_dropout_rate(dropout2_rate)

    if in_dygraph_mode():
        out, _, _, _, _, _, _, _, _, _, _ = _C_ops.fused_feedforward(
            x, None, None, linear1_weight, linear1_bias, linear2_weight,
            linear2_bias, ln1_scale, ln1_bias, ln2_scale, ln2_bias,
            'pre_layer_norm', pre_layer_norm, 'ln1_epsilon', ln1_epsilon,
            'ln2_epsilon', ln2_epsilon, 'act_method', activation,
            'dropout1_rate', dropout1_rate, 'dropout2_rate', dropout2_rate)
        return out

    helper = LayerHelper("fused_feedforward")
    dtype = x.dtype
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'fused_feedforward')
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fused_feedforward')

    out = helper.create_variable_for_type_inference(x.dtype)
    dropout1_mask = helper.create_variable_for_type_inference(
        'uint8', stop_gradient=True)
    dropout2_mask = helper.create_variable_for_type_inference(
        'uint8', stop_gradient=True)
    ln1_mean = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln1_variance = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln2_mean = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln2_variance = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    linear1_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    ln1_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    dropout1_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)
    dropout2_out = helper.create_variable_for_type_inference(
        x.dtype, stop_gradient=True)

    helper.append_op(
        type='fused_feedforward',
        inputs={
            'X': x,
            'Linear1Weight': linear1_weight,
            'Linear1Bias': linear1_bias,
            'Linear2Weight': linear2_weight,
            'Linear2Bias': linear2_bias,
            'Ln1Scale': ln1_scale,
            'Ln1Bias': ln1_bias,
            'Ln2Scale': ln2_scale,
            'Ln2Bias': ln2_bias,
        },
        outputs={
            'Out': out,
            'Dropout1Mask': dropout1_mask,
            'Dropout2Mask': dropout2_mask,
            'Ln1Mean': ln1_mean,
            'Ln1Variance': ln1_variance,
            'Ln2Mean': ln2_mean,
            'Ln2Variance': ln2_variance,
            'Linear1Out': linear1_out,
            'Ln1Out': ln1_out,
            'Dropout1Out': dropout1_out,
            'Dropout2Out': dropout2_out,
        },
        attrs={
            'dropout1_rate': dropout1_rate,
            'dropout2_rate': dropout2_rate,
            'act_method': activation,
            'pre_layer_norm': pre_layer_norm,
            'ln1_epsilon': ln1_epsilon,
            'ln2_epsilon': ln2_epsilon,
        })
    return out


176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
def fused_multi_head_attention(x,
                               qkv_weight,
                               linear_weight,
                               pre_layer_norm=False,
                               pre_ln_scale=None,
                               pre_ln_bias=None,
                               ln_scale=None,
                               ln_bias=None,
                               pre_ln_epsilon=1e-05,
                               qkv_bias=None,
                               linear_bias=None,
                               attn_mask=None,
                               dropout_rate=0.5,
                               attn_dropout_rate=0.5,
                               ln_epsilon=1e-05,
                               name=None):
    """
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
195
    to information from different representation subspaces. This API only
196
    support self_attention. The pseudo code is as follows:
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

    .. code-block:: python

    	if pre_layer_norm:
    	    out = layer_norm(x)
            out = linear(out) + qkv) + bias
    	else:
	    out = linear(x) + bias
    	out = transpose(out, perm=[2, 0, 3, 1, 4])
    	# extract q, k and v from out.
    	q = out[0:1,::]
    	k = out[1:2,::]
    	v = out[2:3,::]
    	out = q * k^t
    	out = attn_mask + out
    	out = softmax(out)
    	out = dropout(out)
    	out = out * v
    	out = transpose(out, perm=[0, 2, 1, 3])
    	out = out_linear(out)
    	out = layer_norm(x + dropout(linear_bias + out))
218 219

    Parameters:
220
        x (Tensor): The input tensor of fused_multi_head_attention. The shape is
221 222 223
            `[batch\_size, sequence\_len, embed\_dim]`.
        qkv_weight (Tensor): The qkv weight tensor. The shape is `[3, num_head, dim_head, dim_embed]`.
        linear_weight (Tensor): The linear weight tensor. The shape is `[embed_dim, embed_dim]`.
224
        pre_layer_norm (bool, optional): whether it is pre_layer_norm (True) or post_layer_norm architecture
225
	    (False). Default False.
226 227 228 229
        pre_ln_scale (Tensor, optional): The weight tensor of pre layernorm. Default None.
        pre_ln_bias (Tensor, optional): The bias tensor of pre layernorm. Default None.
        ln_scale (Tensor, optional): The weight tensor of layernorm. Default None.
        ln_bias (Tensor, optional): The bias tensor of layernorm. Default None.
230
        pre_ln_epsilon (float, optional): Small float value added to denominator of the pre layer_norm
231
            to avoid dividing by zero. Default is 1e-5.
232
        qkv_bias (Tensor, optional): The bias of qkv computation. The shape is `[3, num_head, dim_head]`.
233 234
            Default None.
        linear_bias (Tensor, optional): The bias of linear. The shape is `[embed_dim]`. Default None.
235 236 237 238 239 240
        attn_mask (Tensor, optional):  A tensor used in multi-head attention to prevents attention to
 	    some unwanted positions, usually the paddings or the subsequent positions. It is a tensor
            with shape broadcasted to `[batch_size, n_head, sequence_length, sequence_length]`. When the
            data type is bool, the unwanted positions have `False` values and the others have `True` values.
            When the data type is int, the unwanted positions have 0 values and the others have 1 values.
            When the data type is float, the unwanted positions have `-INF` values and the others have 0 values.
241
            It can be None when nothing wanted or needed to be prevented attention to. Default None.
242
        dropout_rate (float, optional): The dropout probability used on attention
243
            weights to drop some attention targets for the dropout after attention.
244
            0 for no dropout. Default 0.5.
245
        attn_dropout_rate (float, optional): The dropout probability used on attention
246
            weights to drop some attention targets for the dropout in attention.
247
            0 for no dropout. Default 0.5.
248
        ln_epsilon (float, optional): Small float value added to denominator of layer_norm
249
            to avoid dividing by zero. Default is 1e-5.
250

251 252 253
    Returns:
        Tensor: The output Tensor, the data type and shape is same as `x`.

254 255 256
    Examples:

        .. code-block:: python
257 258

            # required: gpu
259
            import paddle
260
            import paddle.incubate.nn.functional as F
261 262 263

            # input: [batch_size, seq_len, embed_dim]
            x = paddle.rand(shape=(2, 4, 128), dtype="float32")
264
            # qkv_weight: [3, num_head, head_dim, embed_dim]
265
            qkv_weight = paddle.rand(shape=(3, 4, 32, 128), dtype="float32")
266
            # qkv_bias: [3, num_head, head_dim]
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
            qkv_bias = paddle.rand(shape=(3, 4, 32), dtype="float32")
            # linear_weight: [embed_dim, embed_dim]
            linear_weight = paddle.rand(shape=(128, 128), dtype="float32")
            # linear_bias: [embed_dim]
            linear_bias = paddle.rand(shape=[128], dtype="float32")
            # self attention mask: [batch_size, num_heads, seq_len, seq_len]
            attn_mask = paddle.rand(shape=(2, 4, 4, 4), dtype="float32")

            # output: [batch_size, seq_len, embed_dim]
            output = F.fused_multi_head_attention(
                x, qkv_weight, linear_weight, False,
                None, None, None, None, 1e-5, qkv_bias,
                linear_bias, attn_mask)
            # [2, 4, 128]
            print(output.shape)
    """
    if in_dygraph_mode():
284 285
        # pre_ln_mean, pre_ln_variance, pre_ln_out, qkv_out, qkv_bias_out, transpose_out, qk_out,
        # qktv_out, softmax_out, attn_dropout_mask_out, attn_dropout_out, attn_mask_out, fmha_out,
286
        # linear_out, dropout_mask_out, ln_mean_out, ln_var_out, bias_dropout_residual_out, final_out
287 288 289 290 291 292
        assert len(qkv_weight.shape
                   ) == 4, "The dims of the shape of qkv_weight should be 4."
        assert qkv_weight.shape[
            0] == 3, "The shape of qkv_weight should be [3, num_head, head_dim, embed_dim]."
        assert qkv_weight.shape[3] == x.shape[
            2], "The 3rd dim of qkv_weight and 2nd dim of x should be the same, i.e., embed_dim."
293 294 295 296 297 298 299
        _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, final_out = _C_ops.fused_attention(
            x, pre_ln_scale, pre_ln_bias, qkv_weight, qkv_bias, attn_mask,
            linear_weight, linear_bias, ln_scale, ln_bias, 'pre_layer_norm',
            pre_layer_norm, 'epsilon', pre_ln_epsilon, 'dropout_rate',
            dropout_rate, 'attn_dropout_rate', attn_dropout_rate, 'ln_epsilon',
            ln_epsilon)
        return final_out
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    else:
        helper = LayerHelper('fused_multi_head_attention', **locals())
        dtype = x.dtype
        # check dtypes
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'fused_multihead_attention')
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'fused_multi_head_attention')

        # set inputs
        inputs = dict()
        inputs['X'] = [x]
        if pre_ln_scale:
            inputs['LnScale'] = [pre_ln_scale]
        if pre_ln_bias:
            inputs['LnBias'] = [pre_ln_bias]
        inputs['QKVW'] = [qkv_weight]
        inputs['QKVBias'] = [qkv_bias]
        inputs['SrcMask'] = attn_mask
        inputs['OutLinearW'] = [linear_weight]
        inputs['OutLinearBias'] = [linear_bias]
        if ln_scale:
            inputs['Ln2Scale'] = [ln_scale]
        if ln_bias:
            inputs['Ln2Bias'] = [ln_bias]

        # set attrs
        attrs = {
            'pre_layer_norm': pre_layer_norm,
            'epsilon': pre_ln_epsilon,
            'ln_epsilon': ln_epsilon,
            'dropout_rate': dropout_rate,
            'attn_dropout_rate': attn_dropout_rate
        }

        # set outputs
        pre_ln_mean_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True)
        pre_ln_variance_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True)
        pre_ln_out = helper.create_variable_for_type_inference(dtype=dtype)

        qkv_out = helper.create_variable_for_type_inference(dtype=dtype)
        qkv_bias_out = helper.create_variable_for_type_inference(dtype=dtype)

        transpose_out = helper.create_variable_for_type_inference(dtype=dtype)
        qk_out = helper.create_variable_for_type_inference(dtype=dtype)
        qktv_out = helper.create_variable_for_type_inference(dtype=dtype)
        softmax_out = helper.create_variable_for_type_inference(dtype=dtype)
        attn_dropout_mask_out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
        attn_dropout_out = helper.create_variable_for_type_inference(
            dtype=dtype)
        attn_mask_out = helper.create_variable_for_type_inference(dtype=dtype)
        fmha_out = helper.create_variable_for_type_inference(dtype=dtype)
        out_linear_out = helper.create_variable_for_type_inference(dtype=dtype)
        dropout_mask_out = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
        ln_mean_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True)
        ln_variance_out = helper.create_variable_for_type_inference(
            dtype=dtype, stop_gradient=True)
        bias_dropout_residual_out = helper.create_variable_for_type_inference(
            dtype=dtype)
        final_out = helper.create_variable_for_type_inference(dtype=dtype)

        helper.append_op(
            type='fused_attention',
            inputs=inputs,
            outputs={
                "LnMean": pre_ln_mean_out,
                "LnVariance": pre_ln_variance_out,
                "LnOut": pre_ln_out,
                "QKVOut": qkv_out,
                "QKVBiasOut": qkv_bias_out,
                "TransposeOut2": transpose_out,
                "QKOut": qk_out,
                "QKTVOut": qktv_out,
                "SoftmaxOut": softmax_out,
                "AttnDropoutMaskOut": attn_dropout_mask_out,
                "AttnDropoutOut": attn_dropout_out,
                "SrcMaskOut": attn_mask_out,
                "FMHAOut": fmha_out,
                "OutLinearOut": out_linear_out,
                "DropoutMaskOut": dropout_mask_out,
                "Ln2Mean": ln_mean_out,
                "Ln2Variance": ln_variance_out,
                "BiasDropoutResidualOut": bias_dropout_residual_out,
                'Y': final_out
            },
            attrs=attrs)
        return final_out