fp16_utils.py 29.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import collections
16
import logging
17

18
import numpy as np
19

20
import paddle
21 22 23 24
from paddle.fluid import core, framework, global_scope
from paddle.fluid.log_helper import get_logger
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager

25
from .fp16_lists import AutoMixedPrecisionLists, get_low_precision_dtypestr
26

27 28 29
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
30

31
_valid_types = [
32 33 34
    core.VarDesc.VarType.LOD_TENSOR,
    core.VarDesc.VarType.SELECTED_ROWS,
    core.VarDesc.VarType.LOD_TENSOR_ARRAY,
35 36 37 38
]

_fp16_guard_pattern = "__use_fp16__"

39

J
Jie Fang 已提交
40 41
def _rename_arg(op, old_name, new_name):
    """
42
    If an op has old_name input and output, rename these input
J
Jie Fang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56
    args new_name.

    Args:
        op (Operator): Current operator.
        old_name (str): The old name of input args.
        new_name (str): The new name of input args.
    """
    op_desc = op.desc
    if isinstance(op_desc, tuple):
        op_desc = op_desc[0]
    op_desc._rename_input(old_name, new_name)
    op_desc._rename_output(old_name, new_name)


57 58 59 60 61 62 63 64 65 66 67 68
def _rename_op_input(program, op_var_rename_map, origin_ops, keep_fp32_ops):
    for block in program.blocks:
        ops = block.ops
        block_id = block.idx
        for op in ops:
            if op not in origin_ops or op in keep_fp32_ops:
                continue
            for name in op.input_arg_names:
                if name in op_var_rename_map[block_id]:
                    op._rename_input(name, op_var_rename_map[block_id][name])


J
Jie Fang 已提交
69 70 71 72 73 74 75
def _dtype_to_str(dtype):
    """
    Convert specific variable type to its corresponding string.

    Args:
        dtype (VarType): Variable type.
    """
76 77 78
    if dtype in [core.VarDesc.VarType.FP16, core.VarDesc.VarType.BF16]:
        # TODO(Xreki): change the returned str to "bf16" for BF16 data type.
        # Currently too many codes use "cast_fp16" as key.
J
Jie Fang 已提交
79 80 81 82 83
        return 'fp16'
    else:
        return 'fp32'


84 85 86 87 88 89 90 91 92 93 94 95 96 97
_keep_layer_norm_scale_bias_to_fp32_flag = True


def _keep_layer_norm_scale_bias_to_fp32(*args):
    global _keep_layer_norm_scale_bias_to_fp32_flag
    if len(args) == 0:
        return _keep_layer_norm_scale_bias_to_fp32_flag
    else:
        assert len(args) == 1 and isinstance(args[0], bool)
        old_value = _keep_layer_norm_scale_bias_to_fp32_flag
        _keep_layer_norm_scale_bias_to_fp32_flag = args[0]
        return old_value


98 99
def _keep_fp32_input(op, in_name):
    op_type = op.type
100
    if op_type == 'batch_norm':
101 102
        # Scale, Bias, Mean, Variance should be float32.
        return in_name != 'X'
103 104
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
        return in_name != 'X'
105 106
    if op_type == 'instance_norm':
        return in_name != 'X'
107 108 109 110
    if op_type == 'fused_bn_add_activation':
        return in_name not in {'X', 'Z'}
    if op_type == 'resnet_unit':
        return in_name not in {'X', 'FilterX', 'Z', 'FilterZ'}
111 112
    if op_type in ['fused_attention', 'fused_feedforward']:
        return in_name in {
113 114 115 116 117 118
            'LnScale',
            'LnBias',
            'Ln2Scale',
            'Ln2Bias',
            "Ln1Scale",
            "Ln1Bias",
119
        }
120 121
    if op_type == 'fused_multi_transformer':
        return in_name in {'LnScale', 'LnBias', 'FFNLnScale', 'FFNLnBias'}
122 123 124 125 126
    return False


def _keep_fp32_output(op, out_name):
    op_type = op.type
127 128 129
    if op_type in ['batch_norm', 'fused_bn_add_activation']:
        return out_name != 'Y'
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
130 131 132
        return out_name != 'Y'
    if op_type == 'resnet_unit':
        return out_name not in {'Y', 'ConvX', 'ConvZ'}
133 134
    if op_type in ['fused_attention', 'fused_feedforward']:
        return out_name in {
135 136 137 138 139 140
            'LnMean',
            'LnVariance',
            'Ln2Mean',
            'Ln2Variance',
            'Ln1Mean',
            'Ln1Variance',
141
        }
142 143 144
    return False


J
Jie Fang 已提交
145 146 147 148 149 150 151 152 153
def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
    """
    Insert cast op and rename args of input and output.

    Args:
        block (Program): The block in which the operator is.
        op (Operator): The operator to insert cast op.
        idx (int): The index of current operator.
        src_dtype (VarType): The input variable dtype of cast op.
Z
Zhen Wang 已提交
154
        dest_dtype (VarType): The output variable dtype of cast op.
J
Jie Fang 已提交
155 156 157 158 159

    Returns:
        num_cast_op (int): The number of cast ops that have been inserted.
    """
    num_cast_ops = 0
160

J
Jie Fang 已提交
161
    for in_name in op.input_names:
162
        if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
163 164
            op, in_name
        ):
165
            continue
J
Jie Fang 已提交
166
        for in_var_name in op.input(in_name):
H
huangxu96 已提交
167
            in_var = block._find_var_recursive(in_var_name)
168
            if in_var.type not in _valid_types or in_var.dtype == dest_dtype:
J
Jie Fang 已提交
169 170
                continue
            if in_var.dtype == src_dtype:
171 172 173
                cast_name = in_var.name + '.cast_' + _dtype_to_str(dest_dtype)
                out_var = block.vars.get(cast_name)
                if out_var is None or out_var.dtype != dest_dtype:
174 175 176 177 178 179
                    op_device = op.attr('op_device')
                    # NOTE(wangxi): optimize for pipeline, reduce one send.
                    # if in_var is stop_gradient and prev_op device is `all`,
                    # set cast_op device to `all`, can reduce send cast_var.
                    # TODO: need remove this after we unified the dynamic
                    # and static pipeline interface.
180 181 182 183
                    if (
                        src_dtype == core.VarDesc.VarType.FP32
                        and in_var.stop_gradient
                    ):
184 185
                        prev_op = None
                        if in_var.op is op:
186 187 188
                            prev_op = find_true_prev_op(
                                block.ops, op, in_var_name
                            )
189 190 191 192 193 194 195
                        elif in_var.op is not None:
                            prev_op = in_var.op

                        prev_op_device = None
                        if prev_op is not None:
                            prev_op_device = prev_op.attr('op_device')

196 197 198 199
                        if (
                            prev_op_device is not None
                            and 'all' in prev_op_device
                        ):
200 201
                            op_device = prev_op_device

202 203 204 205
                    out_var = block.create_var(
                        name=cast_name,
                        dtype=dest_dtype,
                        persistable=False,
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
                        stop_gradient=in_var.stop_gradient,
                    )

                    block._insert_op_without_sync(
                        idx,
                        type="cast",
                        inputs={"X": in_var},
                        outputs={"Out": out_var},
                        attrs={
                            "in_dtype": in_var.dtype,
                            "out_dtype": out_var.dtype,
                            "op_device": op_device,
                            "op_role": op.attr("op_role"),
                        },
                    )
221
                    num_cast_ops += 1
J
Jie Fang 已提交
222 223 224 225
                _rename_arg(op, in_var.name, out_var.name)
            else:
                if op.has_attr('in_dtype'):
                    op._set_attr('in_dtype', dest_dtype)
226 227 228 229
    if src_dtype == core.VarDesc.VarType.FP32 and dest_dtype in [
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.BF16,
    ]:
J
Jie Fang 已提交
230
        for out_name in op.output_names:
231
            if _keep_fp32_output(op, out_name):
232
                continue
J
Jie Fang 已提交
233 234
            for out_var_name in op.output(out_name):
                out_var = block.var(out_var_name)
235
                if out_var.type not in _valid_types:
J
Jie Fang 已提交
236
                    continue
237
                if out_var.dtype == core.VarDesc.VarType.FP32:
238
                    out_var.desc.set_dtype(dest_dtype)
J
Jie Fang 已提交
239
                    if op.has_attr('out_dtype'):
240
                        op._set_attr('out_dtype', dest_dtype)
J
Jie Fang 已提交
241 242 243
    return num_cast_ops


244 245 246
def _insert_cast_post_op(
    block, op, idx, src_dtype, dest_dtype, target_name, op_var_rename_map
):
247 248 249 250 251 252
    num_cast_ops = 0

    target_var = block.var(target_name)
    if target_var.type not in _valid_types or target_var.dtype == dest_dtype:
        return num_cast_ops

253 254 255 256 257
    assert (
        target_var.dtype == src_dtype
    ), "The real dtype({}) is not equal to the src dtype({})".format(
        _dtype_to_str(target_var.dtype), _dtype_to_str(src_dtype)
    )
258 259 260 261

    cast_name = target_var.name + '.cast_' + _dtype_to_str(dest_dtype)
    cast_var = block.vars.get(cast_name)
    if cast_var is None or cast_var.dtype != dest_dtype:
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        cast_var = block.create_var(
            name=cast_name,
            dtype=dest_dtype,
            persistable=False,
            stop_gradient=target_var.stop_gradient,
        )
        block._insert_op(
            idx,
            type="cast",
            inputs={"X": target_var},
            outputs={"Out": cast_var},
            attrs={
                "in_dtype": target_var.dtype,
                "out_dtype": cast_var.dtype,
                "op_device": op.attr("op_device"),
                "op_role": op.attr("op_role"),
            },
        )
280 281 282 283 284 285
        num_cast_ops += 1
        op_var_rename_map[block.idx][target_var.name] = cast_var.name

    return num_cast_ops


286 287 288 289 290 291 292 293 294 295
def find_true_prev_op(ops, cur_op, var_name):
    """
    Find the true prev op that outputs var_name variable.

    Args:
        ops (list): A list of ops.
        cur_op (Operator): Current operator which has var_name variable.
        var_name (string): Variable name.
    """
    prev_op = []
J
Jie Fang 已提交
296
    for op in ops:
297 298
        if op == cur_op:
            break
J
Jie Fang 已提交
299 300 301
        for out_name in op.output_names:
            for out_var_name in op.output(out_name):
                if out_var_name == var_name:
302 303 304
                    prev_op.append(op)
    if prev_op:
        if not len(prev_op) == 1:
305 306
            raise ValueError(
                "There must be only one previous op "
307
                f"that outputs {var_name} variable"
308
            )
309 310 311
        else:
            return prev_op[0]
    return None
J
Jie Fang 已提交
312 313


314
def find_true_post_op(ops, cur_op, var_name, search_all=False):
M
mapingshuo 已提交
315 316 317 318 319 320 321
    """
    if there are post ops, return them, if there is no post op,
    return None instead.
    Args:
        ops (list): A list of ops.
        cur_op (Operator): Current operator which has var_name variable.
        var_name (string): Variable name.
322
        search_all (bool): The type of operator search. Use if \"cur_op\" is not in the \"ops\" set.
M
mapingshuo 已提交
323 324
    """
    post_op = []
325 326
    if search_all:
        """
327 328 329 330 331
        \"cur_op\" do not have to be in list of \"ops\". E.g. \"cur_op\" can come
        from startup_prog block and \"ops\" list from main_prog block.
        By setting idx to -1, we'll start looking for post-ops from the top of the list.
        If search_all is False, assume that \"cur_op\" is in \"ops\" list,
        so to reduce the time of search we can start iterating from \"cur_op\" idx.
332 333 334 335 336 337
        """
        idx = -1
    else:
        for idx, op in enumerate(ops):
            if op == cur_op:
                break
M
mapingshuo 已提交
338 339 340 341 342 343 344

    for i in range(idx + 1, len(ops)):
        op = ops[i]
        for in_name in op.input_names:
            for in_var_name in op.input(in_name):
                if in_var_name == var_name:
                    post_op.append(op)
345 346

    return post_op
M
mapingshuo 已提交
347 348 349


def find_op_index(block_desc, cur_op_desc):
350
    """ """
M
mapingshuo 已提交
351 352 353 354 355 356
    for idx in range(block_desc.op_size()):
        if cur_op_desc == block_desc.op(idx):
            return idx
    return -1


357 358 359 360 361 362 363 364 365 366 367 368
def _is_in_black_varnames(op, amp_lists):
    for in_name in op.input_arg_names:
        if in_name in amp_lists.black_varnames:
            return True

    for out_name in op.output_arg_names:
        if out_name in amp_lists.black_varnames:
            return True

    return False


369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
def _need_keep_fp32(op, unsupported_op_list, use_fp16_guard):
    if op.type in unsupported_op_list:
        # the highest priority condition: If ops don't have fp16 computing kernels,
        # they must be executed in fp32 calculation pattern.
        return True

    # process ops about learning rate
    in_out_arg_names = []
    in_out_arg_names.extend(list(op.input_arg_names))
    in_out_arg_names.extend(list(op.output_arg_names))
    for name in in_out_arg_names:
        if "learning_rate" in name:
            return True

    if use_fp16_guard:
384 385 386
        if op.has_attr("op_namescope") and (
            _fp16_guard_pattern in op.attr("op_namescope")
        ):
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
            # op in fp16 guard
            return False
        else:
            # op not in fp16 guard
            return True
    else:
        return False


@signature_safe_contextmanager
def fp16_guard():
    """
    As for the pure fp16 training, if users set `use_fp16_guard` to True,
    only those ops created in the context manager `fp16_guard` will be
    transformed as float16 type.
H
huangxu96 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.nn.functional as F
            paddle.enable_static()
            data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
            conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)

            with paddle.static.amp.fp16_guard():
                bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                hidden = paddle.static.nn.fc(pool, size=10)
                loss = paddle.mean(hidden)
418 419 420 421 422
    """
    with framework.name_scope(prefix=_fp16_guard_pattern):
        yield


423 424 425 426 427 428
def cast_model_to_fp16(
    program,
    amp_lists=None,
    use_fp16_guard=True,
    dest_type=core.VarDesc.VarType.FP16,
):
429 430 431 432 433 434
    """
    Traverse all ops in the whole model and set their inputs and outputs
    to the fp16 data type. This function will do some special process for
    the batch normalization, which keeps the computational process of
    batchnorms in FP32.
    Args:
435 436 437 438
        program (Program): The used program.
        amp_lists (AutoMixedPrecisionLists): An AutoMixedPrecisionLists object.
        use_fp16_guard(bool): Determine whether to use `fp16_guard` when
                              constructing the program. Default True.
439
        dest_type(core.VarDesc.VarType): the cast type. such as core.VarDesc.VarType.FP16 and core.VarDesc.VarType.BF16.
440 441
    """

442
    if amp_lists is None:
443 444
        dtype = get_low_precision_dtypestr(dest_type)
        amp_lists = AutoMixedPrecisionLists(dtype)
445 446 447 448 449 450 451 452
    amp_lists.unsupported_list -= {
        "conditional_block_grad",
        "conditional_block",
        "conditional_block_infer",
        "select_input",
        "while",
        "while_grad",
        "cast",
453 454 455
        "tensor_array_to_tensor",
        "lod_array_length",
        "write_to_array",
456
    }
457 458 459 460 461 462 463 464
    global_block = program.global_block()
    keep_fp32_ops = set()
    to_fp16_var_names = set()
    origin_ops = []
    for block in program.blocks:
        origin_ops.extend(block.ops)

    for block in program.blocks:
465 466 467 468
        ops = block.ops
        for op in ops:
            if op.type == 'create_py_reader' or op.type == 'read':
                continue
469 470 471
            if _need_keep_fp32(op, amp_lists.unsupported_list, use_fp16_guard):
                keep_fp32_ops.add(op)
                continue  # processed below
472
            for in_name in op.input_names:
473 474
                # for ipu, all inputs must be converted to fp16
                if not core.is_compiled_with_ipu() and _keep_fp32_input(
475 476
                    op, in_name
                ):
477 478 479 480
                    continue
                for in_var_name in op.input(in_name):
                    in_var = None
                    try:
481
                        in_var = block._var_recursive(in_var_name)
482 483
                    except ValueError as e:
                        _logger.debug(
484 485 486 487
                            "-- {}, try to get it in the global block --".format(
                                e
                            )
                        )
488 489 490
                        in_var = global_block.var(in_var_name)
                        if in_var is not None:
                            _logger.debug(
491 492 493 494
                                "-- var {} is got in the global block --".format(
                                    in_var_name
                                )
                            )
495

496
                    if in_var is None or in_var.type not in _valid_types:
497 498 499
                        continue

                    if in_var.dtype == core.VarDesc.VarType.FP32:
500
                        in_var.desc.set_dtype(dest_type)
501
                        to_fp16_var_names.add(in_var_name)
502 503

                    _logger.debug(
504 505 506 507
                        "-- op type: {}, in var name: {}, in var dtype: {} --".format(
                            op.type, in_var_name, in_var.dtype
                        )
                    )
508 509

            for out_name in op.output_names:
510 511
                # for ipu, all outputs must be converted to fp16
                if not core.is_compiled_with_ipu() and _keep_fp32_output(
512 513
                    op, out_name
                ):
514 515 516 517
                    continue
                for out_var_name in op.output(out_name):
                    out_var = None
                    try:
518
                        out_var = block._var_recursive(out_var_name)
519 520
                    except ValueError as e:
                        _logger.debug(
521 522 523 524
                            "-- {}, try to get it in the global block --".format(
                                e
                            )
                        )
525 526 527
                        out_var = global_block.var(out_var_name)
                        if out_var is not None:
                            _logger.debug(
528 529 530 531
                                "-- var {} is got in the global block --".format(
                                    out_var_name
                                )
                            )
532

533
                    if out_var is None or out_var.type not in _valid_types:
534 535 536
                        continue

                    if out_var.dtype == core.VarDesc.VarType.FP32:
537
                        out_var.desc.set_dtype(dest_type)
538 539

                    _logger.debug(
540 541 542 543
                        "-- op type: {}, out var name: {}, out var dtype: {} --".format(
                            op.type, out_var_name, out_var.dtype
                        )
                    )
544 545 546 547 548 549
            for attr_name in ['in_dtype', 'out_dtype', 'dtype']:
                if (
                    op.has_attr(attr_name)
                    and op.attr(attr_name) == core.VarDesc.VarType.FP32
                ):
                    op._set_attr(attr_name, dest_type)
550

551 552 553 554 555 556 557 558 559 560 561
    # process ops in keep_fp32_ops
    op_var_rename_map = [
        collections.OrderedDict() for _ in range(len(program.blocks))
    ]
    for block in program.blocks:
        ops = block.ops
        idx = 0
        while idx < len(ops):
            op = ops[idx]
            num_cast_ops = 0
            if op in keep_fp32_ops:
562 563 564 565
                pre_cast_num = _insert_cast_op(
                    block,
                    op,
                    idx,
566
                    dest_type,
567 568
                    core.VarDesc.VarType.FP32,
                )
569 570 571 572 573
                num_cast_ops += pre_cast_num
                for out_var_name in op.output_arg_names:
                    out_var = block.vars.get(out_var_name)
                    if out_var is None or out_var.type not in _valid_types:
                        continue
574
                    if out_var.dtype == dest_type:
575 576 577 578 579 580
                        out_var.desc.set_dtype(core.VarDesc.VarType.FP32)
                        post_ops = find_true_post_op(ops, op, out_var_name)
                        for post_op in post_ops:
                            if post_op in keep_fp32_ops:
                                continue
                            post_cast_num = _insert_cast_post_op(
581 582 583
                                block,
                                op,
                                idx + pre_cast_num + 1,
584
                                core.VarDesc.VarType.FP32,
585
                                dest_type,
586 587 588
                                out_var_name,
                                op_var_rename_map,
                            )
589 590 591 592 593
                            num_cast_ops += post_cast_num
            idx += num_cast_ops + 1

    _rename_op_input(program, op_var_rename_map, origin_ops, keep_fp32_ops)
    return to_fp16_var_names
594

595

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
def _convert_float_to_bfloat16(place, fp32_array):
    paddle.disable_static()
    framework._set_expected_place(place)
    fp32_tensor = paddle.to_tensor(fp32_array)
    bf16_array = paddle.cast(fp32_tensor, paddle.bfloat16).numpy()
    paddle.enable_static()
    return bf16_array


def cast_parameters_to_fp16(
    place,
    program,
    scope=None,
    to_fp16_var_names=None,
    dest_type=core.VarDesc.VarType.FP16,
):
612
    """
613
    Traverse all parameters in the whole model and set them to the FP16 data type.
614 615
    Whereas, this function will keep parameters of batchnorms in FP32.
    Args:
616 617 618 619 620 621 622
        place(fluid.CPUPlace|fluid.CUDAPlace): `place` is used to restore the FP16 weight tensors.
        program (Program): The used program.
        scope(fluid.Scope, optional): `scope` is used to get the FP32 weight tensor values.
                                      Default is None.
        to_fp16_var_names(set|list, optional): The data types of vars in `to_fp16_var_names`
                                               will be set to FP16. Usually, it is the returned
                                               value of `cast_model_to_fp16` API.
623
        dest_type(core.VarDesc.VarType): the cast type. such as core.VarDesc.VarType.FP16 and core.VarDesc.VarType.BF16.
624
    """
625 626 627 628
    all_parameters = []
    for block in program.blocks:
        all_parameters.extend(block.all_parameters())

629
    dtype_str = get_low_precision_dtypestr(dest_type)
630 631
    fp16_var_names = to_fp16_var_names if to_fp16_var_names else set()
    var_scope = scope if scope else global_scope()
632
    for param in all_parameters:
633
        if param.name in fp16_var_names:
634 635 636
            _logger.debug(
                f"-- cast {param.name} to {dtype_str}, place is {place}"
            )
637 638 639 640 641 642 643 644 645 646
            if var_scope.find_var(param.name):
                param_t = var_scope.find_var(param.name).get_tensor()
                data = np.array(param_t)
                if dest_type == core.VarDesc.VarType.BF16:
                    bf16_data = _convert_float_to_bfloat16(place, data)
                    param_t.set(bf16_data, place)
                else:
                    param_t.set(np.float16(data), place)
            else:
                _logger.warning(f"Cannot find {param.name}")
647 648


649
def rewrite_program(main_prog, amp_lists, dest_type=core.VarDesc.VarType.FP16):
J
Jie Fang 已提交
650
    """
651
    Traverse all ops in current block and insert cast op according to
J
Jie Fang 已提交
652 653 654 655
    which set current op belongs to.

    1. When an op belongs to the black list, add it to black set
    2. When an op belongs to the white list, add it to white set
656 657 658 659
    3. When an op belongs to the gray list. If one
       of its inputs is the output of black set op or black list op,
       add it to black set. If all of its previous ops are not black
       op and one of its inputs is the output of white set op or
J
Jie Fang 已提交
660 661
       white list op, add it to white set.
    4. When an op isn't in the lists, add it to black op set.
662 663
    5. Add necessary cast ops to make sure that black set op will be
       computed in fp32 mode, while white set op will be computed in
J
Jie Fang 已提交
664 665 666 667
       fp16 mode.

    Args:
        main_prog (Program): The main program for training.
668
        dest_type(core.VarDesc.VarType): the cast type. such as core.VarDesc.VarType.FP16 and core.VarDesc.VarType.BF16.
J
Jie Fang 已提交
669 670
    """
    block = main_prog.global_block()
F
fangshuixun007 已提交
671
    block._sync_with_cpp()
J
Jie Fang 已提交
672 673 674
    ops = block.ops
    white_op_set = set()
    black_op_set = set()
675
    for op in ops:
676

677 678
        # NOTE(zhiqiu): 'create_py_reader' and 'read' is used in non-iterable DataLoder,
        # we don't need to handle reader op and the input of 'create_py_reader' is not
679 680 681 682 683
        # in block, which may result in errors.
        # See GeneratorLoader._init_non_iterable() for details.
        if op.type == 'create_py_reader' or op.type == 'read':
            continue

684
        if amp_lists.black_varnames is not None and _is_in_black_varnames(
685 686
            op, amp_lists
        ):
687 688 689
            black_op_set.add(op)
            continue

J
Jie Fang 已提交
690
        if op.type in amp_lists.black_list:
J
Jie Fang 已提交
691
            black_op_set.add(op)
J
Jie Fang 已提交
692
        elif op.type in amp_lists.white_list:
J
Jie Fang 已提交
693
            white_op_set.add(op)
J
Jie Fang 已提交
694
        elif op.type in amp_lists.gray_list:
J
Jie Fang 已提交
695 696 697 698 699 700 701 702 703 704
            is_black_op = False
            is_white_op = False
            for in_name in op.input_names:
                # if this op has inputs
                if in_name:
                    for in_var_name in op.input(in_name):
                        in_var = block.var(in_var_name)
                        # this in_var isn't the output of other op
                        if in_var.op is None:
                            continue
705 706 707 708
                        elif in_var.op is op:
                            prev_op = find_true_prev_op(ops, op, in_var_name)
                            if prev_op is None:
                                continue
J
Jie Fang 已提交
709 710 711
                        else:
                            prev_op = in_var.op
                        # if it's one of inputs
712 713 714 715
                        if (
                            prev_op in black_op_set
                            or prev_op.type in amp_lists.black_list
                        ):
J
Jie Fang 已提交
716
                            is_black_op = True
717 718 719 720
                        elif (
                            prev_op in white_op_set
                            or prev_op.type in amp_lists.white_list
                        ):
J
Jie Fang 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
                            is_white_op = True
            if is_black_op:
                black_op_set.add(op)
            elif is_white_op:
                white_op_set.add(op)
            else:
                pass
        else:
            # For numerical safe, we apply fp32 computation on ops that
            # are not determined which list they should stay.
            black_op_set.add(op)

    idx = 0
    while idx < len(ops):
        op = ops[idx]
        num_cast_ops = 0
        if op in black_op_set:
738
            num_cast_ops = _insert_cast_op(
739
                block, op, idx, dest_type, core.VarDesc.VarType.FP32
740
            )
J
Jie Fang 已提交
741
        elif op in white_op_set:
742
            num_cast_ops = _insert_cast_op(
743
                block, op, idx, core.VarDesc.VarType.FP32, dest_type
744
            )
J
Jie Fang 已提交
745 746 747 748 749 750
        else:
            pass

        idx += num_cast_ops + 1


751 752 753
def update_role_var_grad(main_prog, params_grads):
    """
    Update op_role_var attr for some ops to make sure the gradients
Z
Zhen Wang 已提交
754
    transferred across GPUs is FP16.
755 756 757 758 759 760 761 762 763 764
    1. Check whether the op that outputs gradient is cast or not.
    2. If op is cast and gradient is FP32, remove the op_role_var
       and find the prev op which outputs FP16 gradient
    3. Update the op_role_var of the prev op.

    Args:
        main_prog (Program): The main program for training.
        params_grads (list): A list of params and grads.
    """
    block = main_prog.global_block()
F
fangshuixun007 已提交
765
    block._sync_with_cpp()
766 767 768 769 770 771 772
    BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward
    OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
    for p, g in params_grads:
        op = g.op
        if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast':
            role = op.attr('op_role')
            if role & int(BACKWARD) and op.has_attr('op_role_var'):
F
fangshuixun007 已提交
773
                op._remove_attr("op_role_var")
774
            else:
775
                raise ValueError(
776 777
                    f"The cast op {op} must be in BACKWARD role "
                    "and have op_role_var attr."
778
                )
779 780 781

            fp16_grad_name = op.input(op.input_names[0])[0]
            op_for_fp16_grad = find_true_prev_op(block.ops, op, fp16_grad_name)
782
            op_role_var_attr_name = (
783
                core.op_proto_and_checker_maker.kOpRoleVarAttrName()
784
            )
785 786 787 788 789
            attr_val = [p.name, fp16_grad_name]
            if op_for_fp16_grad.has_attr(op_role_var_attr_name):
                attr_val.extend(op_for_fp16_grad.attr(op_role_var_attr_name))
            op_for_fp16_grad._set_attr(op_role_var_attr_name, attr_val)

Z
Zhen Wang 已提交
790 791
            # Maximize the all_reduce overlap, and perform the cast
            # operation after gradients transfer.
792
            op._set_attr('op_role', OPTIMIZE)
M
mapingshuo 已提交
793 794 795 796
            # optimize op should stay behind forward and backward ops
            if op == block.ops[-1]:
                continue
            post_ops = find_true_post_op(block.ops, op, g.name)
797
            if post_ops:
798
                raise ValueError(
799
                    f"The cast op {op}'s output should not be"
800
                    "used by a non-optimize op, however, it"
801
                    f"is used by {post_ops[0]}"
802
                )
803
            # add new op in the python and cpp at the same time
M
mapingshuo 已提交
804 805
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(op.desc)
806 807 808 809 810 811 812 813
            new_op = framework.Operator(
                block=block,
                desc=new_op_desc,
                type=None,
                inputs=None,
                outputs=None,
                attrs=None,
            )
F
fangshuixun007 已提交
814
            block.ops.append(new_op)
M
mapingshuo 已提交
815 816
            op_idx = find_op_index(block.desc, op.desc)
            if op_idx == -1:
817
                raise ValueError(f"The op {op} is not in program")
F
fangshuixun007 已提交
818 819
            block._remove_op(op_idx, sync=False)
    block._sync_with_cpp()