MKLDNNActivation.cpp 4.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNActivation.h"
#include "mkldnn.hpp"
#include "paddle/utils/ClassRegistrar.h"

namespace paddle {

static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
/**
 * @def MKLDNN_ACTIVATION_CLASS_NAME
 * @note MKLDNN_ACTIVATION_CLASS_NAME(relu) relu_;
 * means mkldnn_reluActivation relu_;
 */
#define MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) mkldnn_##ACT_TYPE##Activation

T
tensor-tang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/**
 * @def DEFINE_MKLDNN_ACTIVATION
 */
#define DEFINE_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS)               \
  class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) : public BASE_CLASS { \
  private:                                                           \
    static const std::string name;                                   \
                                                                     \
  public:                                                            \
    const std::string& getName() const { return name; }              \
  };                                                                 \
  const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name =   \
      "mkldnn_" #ACT_TYPE;                                           \
  static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] {       \
    gMKLDNNActivationRegistrar                                       \
        .registerClass<MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)>(      \
            "mkldnn_" #ACT_TYPE);                                    \
  });

T
tensor-tang 已提交
48 49 50
/**
 * @def DEFINE_MKLDNN_ELTWISE_ACTIVATION
 */
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#define DEFINE_MKLDNN_ELTWISE_ACTIVATION(ACT_TYPE, ALPHA, BWD_ALPHA)        \
  class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)                              \
      : public MKLDNNEltwiseActivation {                                    \
  private:                                                                  \
    static const std::string name;                                          \
    static const float alpha;                                               \
    static const float bwdAlpha;                                            \
                                                                            \
  public:                                                                   \
    const std::string& getName() const { return name; }                     \
    float getAlpha() const { return alpha; }                                \
    float getBwdAlpha() const { return bwdAlpha; }                          \
  };                                                                        \
  const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name =          \
      "mkldnn_" #ACT_TYPE;                                                  \
  const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::alpha = ALPHA;        \
  const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::bwdAlpha = BWD_ALPHA; \
  static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] {              \
    gMKLDNNActivationRegistrar                                              \
        .registerClass<MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)>(             \
            "mkldnn_" #ACT_TYPE);                                           \
T
tensor-tang 已提交
72 73 74 75 76 77 78
  });

/**
 * @brief MKLDNN Relu Activation.
 * Actually mkldnn_relu is Leaky Relu.
 *  f(x) = x                   (x >= 0)
 *  f(x) = negative_slope * x  (x <  0)
79
 * @note the negative_slope should be -0.f in forward
T
tensor-tang 已提交
80
 */
81
DEFINE_MKLDNN_ELTWISE_ACTIVATION(relu, -0.f, 0.f)
T
tensor-tang 已提交
82 83 84 85

/**
 * @brief MKLDNN Tanh Activation.
 */
86
DEFINE_MKLDNN_ELTWISE_ACTIVATION(tanh, 0.f, 0.f)
T
tensor-tang 已提交
87 88 89 90 91 92

/**
 * @brief MKLDNN ELU(Exponential Linear Unit) Activation.
 *  f(x) = x                              (x >= 0)
 *  f(x) = negative_slope * (exp(x) - 1)  (x <  0)
 */
93
DEFINE_MKLDNN_ELTWISE_ACTIVATION(elu, 0.f, 0.f)
T
tensor-tang 已提交
94

T
tensor-tang 已提交
95 96 97 98 99
/**
 * @brief MKLDNN Softmax Activation
 */
DEFINE_MKLDNN_ACTIVATION(softmax, MKLDNNSoftmaxActivation)

T
tensor-tang 已提交
100 101 102 103 104 105 106 107 108 109 110 111
ActivationFunction* MKLDNNActivation::create(const std::string& type) {
  return gMKLDNNActivationRegistrar.createByType(type);
}

std::vector<std::string> MKLDNNActivation::getAllRegisteredTypes() {
  std::vector<std::string> types;
  gMKLDNNActivationRegistrar.forEachType(
      [&](const std::string& type) { types.push_back(type); });
  return types;
}

}  // namespace paddle