executor_gc_helper.cc 5.7 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/executor_gc_helper.h"
#include <deque>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "glog/logging.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {

struct OpInOutInfo {
 public:
  void Build(const OperatorBase *op) {
    is_built_ = true;
    auto &inferer = op->Info().NoNeedBufferVarsInferer();
    if (inferer) {
      no_need_buffer_ins_ = inferer(op->Inputs(), op->Outputs(), op->Attrs());

      if (no_need_buffer_ins_.empty()) return;

      for (auto &in_name_pair : op->Inputs()) {
        if (no_need_buffer_ins_.count(in_name_pair.first) != 0) {
          continue;
        }

        for (auto &in_arg_name : in_name_pair.second) {
          other_args_set_.insert(in_arg_name);
        }
      }

      for (auto &out_name_pair : op->Outputs()) {
        for (auto &out_arg_name : out_name_pair.second) {
          other_args_set_.insert(out_arg_name);
        }
      }
    }
  }

  bool IsBuilt() const { return is_built_; }

  bool IsInArgBufferNeeded(const std::string &in_arg_name) const {
    return no_need_buffer_ins_.empty() ||
           other_args_set_.count(in_arg_name) != 0;
  }

 private:
S
sneaxiy 已提交
67
  // A set to record unused buffer input vars of op
S
sneaxiy 已提交
68
  std::unordered_set<std::string> no_need_buffer_ins_;
S
sneaxiy 已提交
69
  // A set to record other args of op (including in, out)
S
sneaxiy 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  std::unordered_set<std::string> other_args_set_;
  bool is_built_{false};
};

static bool VarCanBeDeleted(const std::string &name, const BlockDesc &block,
                            const std::unordered_set<std::string> &skip_vars) {
  if (skip_vars.count(name) != 0) {
    return false;
  }

  auto *var_desc = block.FindVar(name);
  if (var_desc == nullptr || var_desc->Persistable()) {
    return false;
  }

  auto type = var_desc->Proto()->type().type();

  return type == proto::VarType::LOD_TENSOR ||
         type == proto::VarType::SELECTED_ROWS ||
         type == proto::VarType::LOD_TENSOR_ARRAY;
}

std::unordered_map<OperatorBase *, std::vector<std::string>> GetUnusedVars(
    const BlockDesc &block,
    const std::vector<std::unique_ptr<OperatorBase>> &ops,
    const std::vector<std::string> &skip_var_list) {
  std::unordered_set<std::string> skip_vars(skip_var_list.begin(),
                                            skip_var_list.end());

  std::unordered_map<std::string, size_t> var_op_idx_map;

  for (size_t i = 0; i < ops.size(); ++i) {
    auto *op = ops[i].get();

    OpInOutInfo info;
    for (auto &name_pair : op->Inputs()) {
      for (auto &name : name_pair.second) {
        if (!VarCanBeDeleted(name, block, skip_vars)) {
          continue;
        }

        // var can be gc-ed
        if (!info.IsBuilt()) {
          info.Build(op);
        }

        if (info.IsInArgBufferNeeded(name)) {
S
sneaxiy 已提交
117
          // Update the last living op of variable to current op
S
sneaxiy 已提交
118 119 120 121 122 123 124 125 126 127 128 129
          var_op_idx_map[name] = i;
        } else {
          VLOG(10) << "Skip reference count computing of variable "
                   << name_pair.first << "(" << name << ") in Operator "
                   << op->Type();
        }
      }
    }

    for (auto &name_pair : op->Outputs()) {
      for (auto &name : name_pair.second) {
        if (VarCanBeDeleted(name, block, skip_vars)) {
S
sneaxiy 已提交
130
          // Update the last living op of variable to current op
S
sneaxiy 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
          var_op_idx_map[name] = i;
        }
      }
    }
  }

  std::unordered_map<OperatorBase *, std::vector<std::string>> result;
  for (auto &name_op_idx_pair : var_op_idx_map) {
    auto &name = name_op_idx_pair.first;
    size_t op_idx = name_op_idx_pair.second;
    result[ops[op_idx].get()].emplace_back(name);
  }
  return result;
}

void DeleteUnusedTensors(
    const Scope &scope, OperatorBase *op,
    const std::unordered_map<OperatorBase *, std::vector<std::string>>
        &delete_vars_map,
    GarbageCollector *gc) {
  auto iter = delete_vars_map.find(op);
  if (iter == delete_vars_map.end()) {
    return;
  }

  auto &delete_vars = iter->second;

  std::deque<std::shared_ptr<memory::Allocation>> garbages;

  for (auto &var_name : delete_vars) {
    auto *var = scope.FindVar(var_name);
    if (var == nullptr) {
      continue;
    }

    VLOG(2) << "Erase variable " << var_name;
    if (var->IsType<LoDTensor>()) {
      garbages.emplace_back(var->GetMutable<LoDTensor>()->MoveMemoryHolder());
    } else if (var->IsType<SelectedRows>()) {
      garbages.emplace_back(
          var->GetMutable<SelectedRows>()->mutable_value()->MoveMemoryHolder());
    } else if (var->IsType<LoDTensorArray>()) {
      auto *lod_tensor_arr = var->GetMutable<LoDTensorArray>();
      for (auto &t : *lod_tensor_arr) {
        garbages.emplace_back(t.MoveMemoryHolder());
      }
    } else {
      PADDLE_THROW("Type %s of %s is not supported eager deletion",
                   framework::ToTypeName(var->Type()), var_name);
    }
  }

  if (!garbages.empty()) {
    gc->Add(std::move(garbages));
  }
}

}  // namespace framework
}  // namespace paddle