embedding_kernel.cu 4.4 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/kernels/embedding_kernel.h"
H
hong 已提交
16
#include "paddle/phi/backends/gpu/gpu_context.h"
S
seemingwang 已提交
17
#include "paddle/phi/backends/gpu/gpu_info.h"
H
hong 已提交
18 19 20
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
21
#include "paddle/phi/kernels/funcs/embedding_util.h"
H
hong 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
namespace phi {

template <typename T, typename IdT, bool PaddingFlag>
__global__ void EmbeddingFW(T *output,
                            const T *table,
                            const IdT *ids,
                            const int64_t N,
                            const int64_t K,
                            const int64_t D,
                            const int64_t padding_idx) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * gridDim.x;

  while (idy < K) {
    auto id = static_cast<int64_t>(ids[idy]);
S
seemingwang 已提交
37 38 39 40 41 42 43 44 45 46
    if (PaddingFlag == false || id != padding_idx) {
      PADDLE_ENFORCE(id >= 0,
                     "Id should no less than 0 but received an id value: %lld.",
                     id);
      PADDLE_ENFORCE(
          id < N,
          "Id should smaller than %lld but received an id value: %lld.",
          N,
          id);
    }
H
hong 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    T *out = output + idy * D;
    const T *tab = table + id * D;
    for (int i = idx; i < D; i += blockDim.x) {
      if (PaddingFlag) {
        if (id == padding_idx)
          out[i] = static_cast<T>(0);
        else
          out[i] = tab[i];
      } else {
        out[i] = tab[i];
      }
    }
    idy += blockDim.y * gridDim.x;
  }
}

template <typename T, typename Context>
struct EmbeddingCUDAFunctor {
  EmbeddingCUDAFunctor(const Context &dev_ctx,
                       const DenseTensor &input,
                       const DenseTensor &weight,
                       int64_t padding_idx,
                       DenseTensor *out)
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_(out),
        padding_idx_(padding_idx) {}

  template <typename IdT>
  void apply() {
    size_t N = weight_.dims()[0];
    size_t D = weight_.dims()[1];
    size_t K = input_.numel();

    const int gridx = 2 * dev_ctx_.GetSMCount();
    dim3 threads(256, 4);
    dim3 grids(gridx, 1);

    const T *table = weight_.template data<T>();
    const IdT *ids = input_.template data<IdT>();
    auto *output = dev_ctx_.template Alloc<T>(out_);
    auto stream = dev_ctx_.stream();

    if (padding_idx_ == -1) {
      EmbeddingFW<T, IdT, false><<<grids, threads, 0, stream>>>(
          output, table, ids, N, K, D, padding_idx_);
    } else {
      EmbeddingFW<T, IdT, true><<<grids, threads, 0, stream>>>(
          output, table, ids, N, K, D, padding_idx_);
    }
  }

 private:
  const phi::GPUContext &dev_ctx_;
  const DenseTensor &input_;
  const DenseTensor &weight_;
  DenseTensor *out_;
  int64_t padding_idx_;
};

template <typename T, typename Context>
void EmbeddingKernel(const Context &ctx,
                     const DenseTensor &input,
                     const DenseTensor &weight,
                     int64_t padding_idx,
                     DenseTensor *out) {
  EmbeddingCUDAFunctor<T, Context> functor(
      ctx, input, weight, padding_idx, out);

  if (input.dtype() == phi::DataType::INT32) {
    functor.template apply<int32_t>();
  } else if (input.dtype() == phi::DataType::INT64) {
    functor.template apply<int64_t>();
121 122
  } else if (input.dtype() == phi::DataType::INT16) {
    functor.template apply<int16_t>();
H
hong 已提交
123 124
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
125
        "emebdding input only support int16, int32 and int64"));
H
hong 已提交
126 127 128 129 130 131 132 133 134 135 136
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(embedding,
                   GPU,
                   ALL_LAYOUT,
                   phi::EmbeddingKernel,
                   float,
                   double,
137
                   int8_t,
138 139
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}