composite_backward_api.h 46.0 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

G
GGBond8488 已提交
17 18 19 20 21 22
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

#include <math.h>

23
#include "paddle/fluid/prim/api/all.h"
24
#include "paddle/fluid/prim/api/generated_prim/prim_generated_api.h"
C
cxxly 已提交
25
#include "paddle/phi/common/amp_type_traits.h"
26 27
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/ddim.h"
C
cxxly 已提交
28

J
Jiabin Yang 已提交
29 30
namespace paddle {
namespace prim {
31 32
using Tensor = paddle::Tensor;
using IntArray = paddle::experimental::IntArrayBase<paddle::Tensor>;
33 34
//  This function should have as same signature as phi, which defined in
//  paddle/phi/api/backward/backward_api.h
J
Jiabin Yang 已提交
35 36 37 38 39 40 41 42 43 44 45 46
template <typename T>
void relu_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto condition = greater_than<T>(
        out, full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    auto res = where<T>(condition,
                        out_grad,
                        full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    set_output<T>(res, x_grad);
  }
}

J
Jiabin Yang 已提交
47
template <typename T>
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
void softmax_grad(const Tensor& out,
                  const Tensor& out_grad,
                  int axis,
                  Tensor* x_grad) {
  if (x_grad) {
    if (out_grad.dims().size() > 0) {
      if (axis >= 0) {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad = new_out_grad -
                          out * sum<T>(new_out_grad, {axis}, out.dtype(), true);
        set_output<T>(tmp_x_grad, x_grad);
      } else {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad =
            new_out_grad - out * sum<T>(new_out_grad,
                                        {out.dims().size() + axis},
                                        out.dtype(),
                                        true);
        set_output<T>(tmp_x_grad, x_grad);
      }
    } else {
      set_output<T>(
          full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype()),
          x_grad);
    }
  }
}

template <typename T>
77 78 79 80 81 82 83
void cast_grad(const Tensor& out_grad, DataType dtype, Tensor* x_grad) {
  if (x_grad) {
    auto res = cast<T>(out_grad, dtype);
    set_output<T>(res, x_grad);
  }
}
template <typename T>
J
Jiabin Yang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
void gather_grad(const Tensor& x,
                 const Tensor& index,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 bool overwrite,
                 Tensor* grad_x) {
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int> tmp_perm;

  // change axis to rank 0
  int axis_value = axis.to<int>();
  tmp_perm.push_back(axis_value);
  // make other ranks
  for (int i = 0; i < x.dims().size(); ++i) {
    if (i != axis_value) {
      tmp_perm.push_back(i);
    }
  }
  std::vector<int> reverse_perm(tmp_perm);
  // make origin ranks
  for (int i = 0; i < static_cast<int>(tmp_perm.size()); ++i) {
105 106 107 108 109
    if (tmp_perm[i] >= 0) {
      reverse_perm[tmp_perm[i]] = i;
    } else {
      reverse_perm[tmp_perm[i] + tmp_perm.size()] = i;
    }
J
Jiabin Yang 已提交
110 111 112 113 114 115 116 117 118 119 120
  }

  // transpose out_grad and zero grad to target rank.
  auto tmp_zero_x_grad = transpose<T>(zero_tensor, tmp_perm);
  auto tmp_out_grad = transpose<T>(out_grad, tmp_perm);
  // scatter grad to grad_x
  auto tmp_grad_x = scatter<T>(tmp_zero_x_grad, index, tmp_out_grad, false);
  auto tmp_grad_x_tranposed = transpose<T>(tmp_grad_x, reverse_perm);
  set_output<T>(tmp_grad_x_tranposed, grad_x);
}

J
Jiabin Yang 已提交
121 122
template <typename T>
void tanh_grad(const Tensor& out, const Tensor& grad_out, Tensor* grad_x) {
123
  if (!grad_x) return;
124
  auto grad_x_tmp = grad_out * (1 - out * out);
125
  set_output<T>(grad_x_tmp, grad_x);
J
Jiabin Yang 已提交
126
}
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
template <typename T>
void tanh_double_grad(const Tensor& out,
                      const Tensor& grad_out,
                      const Tensor& grad_x_grad,
                      Tensor* out_grad,
                      Tensor* grad_out_grad) {
  // tanh grad grad : ddout = (1 - out^2) * ddx, dout = - (dout_old * 2 * out *
  // ddx)
  auto out_m_grad_x_grad = out * grad_x_grad;
  if (out_grad) {
    auto out_grad_tmp = -2 * grad_out * out_m_grad_x_grad;
    set_output<T>(out_grad_tmp, out_grad);
  }

  if (grad_out_grad) {
    auto grad_out_grad_tmp = grad_x_grad - out * out_m_grad_x_grad;
    set_output<T>(grad_out_grad_tmp, grad_out_grad);
  }
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
template <typename T>
void reshape_grad(const Tensor& x, const Tensor& grad_out, Tensor* grad_x) {
  if (grad_x) {
    auto grad_x_tmp = reshape<T>(grad_out, phi::vectorize(x.dims()));
    set_output<T>(grad_x_tmp, grad_x);
  }
}

template <typename T>
void transpose_grad(const Tensor& grad_out,
                    const std::vector<int>& perm,
                    Tensor* grad_x) {
  if (grad_x) {
    std::vector<int> reverse_perm(perm);
    // make origin ranks
    for (int i = 0; i < static_cast<int>(perm.size()); ++i) {
164 165 166 167 168
      if (perm[i] >= 0) {
        reverse_perm[perm[i]] = i;
      } else {
        reverse_perm[perm[i] + perm.size()] = i;
      }
169 170 171 172 173 174
    }
    auto grad_x_tmp = transpose<T>(grad_out, reverse_perm);
    set_output<T>(grad_x_tmp, grad_x);
  }
}

175 176 177 178 179 180 181 182 183
template <typename T>
void subtract_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* dx,
                   Tensor* dy) {
  if (dy) {
    auto scale_out_grad = scale<T>(out_grad, -1.0, 0.0, true);
184
    if (x.dims() != y.dims()) {
185
      // Maybe need reduce here
186 187 188 189
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(scale_out_grad, dy);
      } else {
190 191
        auto dy_reduce_res =
            scale_out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
192
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
193
        set_output<T>(dy_tmp, dy);
194
      }
195 196 197 198 199
    } else {
      by_pass<T>(scale_out_grad, dy);
    }
  }
  if (dx) {
200
    if (y.dims() != x.dims()) {
201
      // Maybe need reduce here
202 203 204 205 206
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
207
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
208
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
209
        set_output<T>(dx_tmp, dx);
210
      }
211 212 213 214 215 216 217 218 219 220 221 222 223 224
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

template <typename T>
void add_grad(const Tensor& x,
              const Tensor& y,
              const Tensor& out_grad,
              int axis,
              Tensor* dx,
              Tensor* dy) {
  if (dy) {
225
    if (x.dims() != y.dims()) {
226
      // Maybe need reduce here
227 228 229 230 231
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dy);
      } else {
        auto dy_reduce_res =
232
            out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
233
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
234
        set_output<T>(dy_tmp, dy);
235 236
      }

237 238 239 240 241
    } else {
      by_pass<T>(out_grad, dy);
    }
  }
  if (dx) {
242
    if (y.dims() != x.dims()) {
243
      // Maybe need reduce here
244 245 246 247 248
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
249
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
250
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
251
        set_output<T>(dx_tmp, dx);
252
      }
253 254 255 256 257 258
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

259 260 261 262 263 264 265 266 267 268
template <typename T>
void sum_grad(const Tensor& x,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
R
risemeup1 已提交
269
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
270 271 272 273 274 275 276 277 278
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
279
  if (x_dim_size == 1) {
280
    x_grad_tmp = out_grad.expand(IntArray(x_dim));
281 282 283 284 285 286 287 288 289
  } else {
    if (!keepdim) {
      auto axis_ = std::vector<int64_t>();
      if (reduce_all) {
        for (int64_t i = 1; i < x_dim_size; i++) {
          axis_.push_back(i);
        }
      } else {
        axis_ = axis.GetData();
290 291 292 293 294
        for (int64_t i = 0; i < axis_size; i++) {
          if (axis[i] < 0) {
            axis_[i] = axis[i] + x_dim_size;
          }
        }
295
      }
296
      auto out_grad_ = unsqueeze<T>(out_grad, axis_);
297
      x_grad_tmp = out_grad_.expand(IntArray(x_dim));
298
    } else {
299
      x_grad_tmp = out_grad.expand(IntArray(x_dim));
300 301 302
    }
  }

303
  set_output<T>(x_grad_tmp, x_grad);
304 305
}

306 307 308 309 310 311 312 313 314 315
template <typename T>
void divide_grad(const Tensor& x,
                 const Tensor& y,
                 const Tensor& out,
                 const Tensor& out_grad,
                 int axis,
                 Tensor* dx,
                 Tensor* dy) {
  if (dy) {
    // dy = -(x/y^2) * dout
316
    auto dy_res = -(x / y.pow(2.0)) * out_grad;
317
    if (x.dims() != y.dims()) {
318
      // Maybe need reduce here
319 320
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
321
        set_output<T>(dy_res, dy);
322 323
      } else {
        auto dy_reduce_res =
324
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
325
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
326
        set_output<T>(dy_tmp, dy);
327
      }
328
    } else {
329
      set_output<T>(dy_res, dy);
330 331 332 333
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = (1/y) * dout
334
    auto one_tensor = full<T>(phi::vectorize(y.dims()), 1.0, y.dtype());
335
    auto dx_res = one_tensor / y * out_grad;
336
    if (y.dims() != x.dims()) {
337
      // Maybe need reduce here
338 339
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
340
        set_output<T>(dx_res, dx);
341 342
      } else {
        auto dx_reduce_res =
343
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
344
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
        set_output<T>(dx_tmp, dx);
      }

    } else {
      set_output<T>(dx_res, dx);
    }
  }  // indicate we will compute dx
}

template <typename T>
void elementwise_pow_grad(const Tensor& x,
                          const Tensor& y,
                          const Tensor& out_grad,
                          int axis,
                          Tensor* dx,
                          Tensor* dy) {
  if (dy) {
    // dy = lnx * x^y
    auto lnx = log<T>(x);
    auto x_pow_y = elementwise_pow<T>(x, y);
    auto dy_res = lnx * x_pow_y;
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, dy);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, dy);
      }
    } else {
      set_output<T>(dy_res, dy);
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = y * x^(y-1)
    auto tmp_z = y - 1.0;
    auto x_pow_z = elementwise_pow<T>(x, tmp_z);
    auto dx_res = y * x_pow_z;
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, dx);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
395
        set_output<T>(dx_tmp, dx);
396 397
      }

398
    } else {
399
      set_output<T>(dx_res, dx);
400 401 402
    }
  }  // indicate we will compute dx
}
403 404 405 406

template <typename T>
void sqrt_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
J
Jiabin Yang 已提交
407 408
    // This calculation is important for resnet.
    auto x_grad_tmp = (0.5 / out) * out_grad;
409
    set_output<T>(x_grad_tmp, x_grad);
410 411
  }
}
412

413 414 415 416 417 418 419 420 421
template <typename T>
void floor_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor =
        full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype());
    set_output<T>(zero_tensor, x_grad);
  }
}

W
wangzhen38 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
template <typename T>
void concat_grad(const std::vector<Tensor>& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 std::vector<Tensor*> x_grad) {
  int axis_value = axis.to<int>();
  int rank = x[0].dims().size();
  if (axis_value < 0) {
    axis_value = axis_value + rank;
  }
  axis_value = axis_value > 0 ? axis_value : 0;
  std::vector<int> sections;
  int x_num = x.size();
  for (int i = 0; i < x_num; ++i) {
    sections.push_back(x[i].dims()[axis_value]);
  }
  std::vector<Tensor> x_grad_tmp =
      split<T>(out_grad, phi::IntArray(sections), axis);
  for (int i = 0; i < x_num; ++i) {
    set_output<T>(x_grad_tmp.at(i), x_grad.at(i));
  }
}

445 446 447 448 449 450 451 452
template <typename T>
void multiply_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* x_grad,
                   Tensor* y_grad) {
  if (x_grad) {
453
    auto x_grad_unreduce = out_grad * y;
454 455
    if (x_grad_unreduce.dims() != x.dims()) {
      auto axes = get_reduce_dims_from_out(x_grad_unreduce.dims(), x.dims());
456
      if (!axes.size()) {
457
        set_output<T>(x_grad_unreduce, x_grad);
458
      } else {
459 460
        auto x_grad_reduced = x_grad_unreduce.sum(
            phi::vectorize(axes), x_grad_unreduce.dtype(), false);
461 462 463
        if (x_grad_reduced.dims().size() != x.dims().size()) {
          x_grad_reduced = reshape<T>(x_grad_reduced, x.shape());
        }
464
        set_output<T>(x_grad_reduced, x_grad);
465 466
      }
    } else {
467
      set_output<T>(x_grad_unreduce, x_grad);
468 469 470
    }
  }
  if (y_grad) {
471
    auto y_grad_unreduce = out_grad * x;
472 473
    if (y_grad_unreduce.dims() != y.dims()) {
      auto axes = get_reduce_dims_from_out(y_grad_unreduce.dims(), y.dims());
474
      if (!axes.size()) {
475
        set_output<T>(y_grad_unreduce, y_grad);
476
      } else {
477 478
        auto y_grad_reduced = y_grad_unreduce.sum(
            phi::vectorize(axes), y_grad_unreduce.dtype(), false);
479 480 481
        if (y_grad_reduced.dims().size() != y.dims().size()) {
          y_grad_reduced = reshape<T>(y_grad_reduced, y.shape());
        }
482
        set_output<T>(y_grad_reduced, y_grad);
483 484
      }
    } else {
485
      set_output<T>(y_grad_unreduce, y_grad);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    }
  }
}

template <typename T>
void expand_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const IntArray& shape,
                 Tensor* x_grad) {
  if (x_grad) {
    auto out_dims = phi::make_ddim(shape.GetData());
    if (out_dims != x.dims()) {
      auto axes = get_reduce_dims(x.dims(), out_dims);
      if (!axes.size()) {
        by_pass<T>(out_grad, x_grad);
      } else {
502
        auto reduced = out_grad.sum(phi::vectorize(axes), x.dtype(), false);
503 504 505
        if (reduced.dims().size() != x.dims().size()) {
          reduced = reshape<T>(reduced, x.shape());
        }
506
        set_output<T>(reduced, x_grad);
507 508 509 510 511 512 513
      }
    } else {
      by_pass<T>(out_grad, x_grad);
    }
  }
}

514 515 516 517 518 519 520 521
template <typename T>
void log_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    // dx = dout / x
    set_output<T>(out_grad / x, x_grad);
  }
}

522 523 524
template <typename T>
void exp_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
525
    set_output<T>(out_grad * out, x_grad);
526 527 528
  }
}

529 530 531 532 533 534 535
template <typename T>
void sigmoid_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    set_output<T>(out_grad * (out * (1 - out)), x_grad);
  }
}

536 537 538 539 540 541 542 543 544
template <typename T>
void abs_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto abs_tmp = abs<T>(x);
    auto divide_tmp = divide<T>(x, abs_tmp);
    set_output<T>(out_grad * divide_tmp, x_grad);
  }
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
template <typename T>
void matmul_double_grad(const Tensor& x,
                        const Tensor& y,
                        const Tensor& grad_out,
                        const paddle::optional<Tensor>& grad_x_grad,
                        const paddle::optional<Tensor>& grad_y_grad,
                        bool transpose_x,
                        bool transpose_y,
                        Tensor* x_grad,
                        Tensor* y_grad,
                        Tensor* grad_out_grad) {
  // Get dims from the input x, y, output_grad
  std::vector<std::int64_t> x_dims = vectorize(x.dims());
  std::vector<std::int64_t> y_dims = vectorize(y.dims());
  std::vector<std::int64_t> grad_out_dims = vectorize(grad_out.dims());

  int x_ndim = x_dims.size();
  int y_ndim = y_dims.size();
  int dout_ndim = grad_out_dims.size();

  // prepare dims for x_ndim <= 1 || y_ndim <= 1
  Tensor x_help, y_help, xg_help, yg_help, out_help;

  if (x_ndim == 1 && y_ndim == 1) {
    transpose_x = false;
    transpose_y = false;
    x_help = reshape<T>(x, IntArray(std::vector<int64_t>({1, x_dims[0]})));
    y_help = reshape<T>(y, IntArray(std::vector<int64_t>({y_dims[0], 1})));
    if (grad_x_grad) {
      xg_help = reshape<T>(grad_x_grad.get(),
                           IntArray(std::vector<int64_t>({1, x_dims[0]})));
    }
    if (grad_y_grad) {
      yg_help = reshape<T>(grad_y_grad.get(),
                           IntArray(std::vector<int64_t>({y_dims[0], 1})));
    }
    out_help = reshape<T>(grad_out, IntArray(std::vector<int64_t>({1, 1})));

  } else if (x_ndim == 1) {
    transpose_x = false;
    x_help = reshape<T>(x, IntArray(std::vector<int64_t>({1, x_dims[0]})));
    y_help = y;
    if (grad_x_grad) {
      xg_help = reshape<T>(grad_x_grad.get(),
                           IntArray(std::vector<int64_t>({1, x_dims[0]})));
    }
    if (grad_y_grad) {
      yg_help = grad_y_grad.get();
    }
    auto tmp_grad_out_dims = grad_out_dims;
    tmp_grad_out_dims.insert(tmp_grad_out_dims.begin(), 1);
    out_help = reshape<T>(grad_out, IntArray(tmp_grad_out_dims));

  } else if (y_ndim == 1) {
    transpose_y = false;
    x_help = x;
    y_help = reshape<T>(y, IntArray(std::vector<int64_t>({y_dims[0], 1})));
    if (grad_x_grad) {
      xg_help = grad_x_grad.get();
    }
    if (grad_y_grad) {
      yg_help = reshape<T>(grad_y_grad.get(),
                           IntArray(std::vector<int64_t>({y_dims[0], 1})));
    }
    auto tmp_grad_out_dims = grad_out_dims;
    tmp_grad_out_dims.push_back(1);
    out_help = reshape<T>(grad_out, IntArray(tmp_grad_out_dims));

  } else {
    x_help = x;
    y_help = y;
    if (grad_x_grad) {
      xg_help = grad_x_grad.get();
    }
    if (grad_y_grad) {
      yg_help = grad_y_grad.get();
    }
    out_help = grad_out;
  }

  bool is_broadcast = true;
  if (x_ndim <= 2 && y_ndim <= 2) {
    is_broadcast = false;
  } else if (x_ndim != y_ndim) {
    is_broadcast = true;
  } else {
    is_broadcast = !std::equal(
        x_dims.cbegin(), x_dims.cbegin() + x_ndim - 2, y_dims.cbegin());
  }
  Tensor dx, dy, ddout_1, ddout_2, ddout;
  if (!grad_x_grad && !grad_y_grad) {
    x_grad = nullptr;
    y_grad = nullptr;
    grad_out_grad = nullptr;
    return;

  } else if (!grad_x_grad) {
    y_grad = nullptr;
    if (!transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, false, false);
      }
    } else if (!transpose_x && transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, false, true);
      }
    } else if (transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, false, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, true, false);
      }
    } else {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, true, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, true, true);
      }
    }

  } else if (!grad_y_grad) {
    x_grad = nullptr;
    if (!transpose_x && !transpose_y) {
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, true, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, false, false);
      }
    } else if (!transpose_x && transpose_y) {
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, false, true);
      }
    } else if (transpose_x && !transpose_y) {
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, false, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, true, false);
      }
    } else {
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, true, true);
      }
    }

  } else {
    if (!transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, true);
      }
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, true, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, false, false);
        ddout_2 = matmul<T>(xg_help, y_help, false, false);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else if (!transpose_x && transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, false);
      }

      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, false, true);
        ddout_2 = matmul<T>(xg_help, y_help, false, true);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else if (transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, false, true);
      }

      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, false, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, true, false);
        ddout_2 = matmul<T>(xg_help, y_help, true, false);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, true, true);
      }
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, true);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, true, true);
        ddout_2 = matmul<T>(xg_help, y_help, true, true);
        ddout = add<T>(ddout_1, ddout_2);
      }
    }
  }

  if (is_broadcast) {
    // Case3: broadcast. It need cost much time to reduce sum for the
    // broadcast and wastes the memory.
    // So we should avoid the case in reality.
    VLOG(3) << "It need cost much time to reduce sum for the broadcast and "
               "wastes the memory. So we should avoid the case in reality";
    // Reduce sum to get grad by ReduceSum
    if (x_grad) {
      auto tx_dims = x_dims;
      auto tx_ndim = x_ndim;
      auto tdout_ndim = dout_ndim;
      if (x_ndim == 1) {
        tx_dims = std::vector<int64_t>({1, x_dims[0]});
        tx_ndim = x_ndim + 1;
        tdout_ndim = dout_ndim + 1;
      }

      auto x_grad_reduce_dims =
          get_reduce_dims(dx, tdout_ndim, tx_ndim, &tx_dims);

      if (!x_grad_reduce_dims.empty()) {
        dx = sum<T>(dx, IntArray(x_grad_reduce_dims), dy.dtype(), true);
      }
      reshape<T>(dx, IntArray(tx_dims));
    }

    if (y_grad) {
      auto ty_dims = y_dims;
      auto ty_ndim = y_ndim;
      auto tdout_ndim = dout_ndim;
      if (y_ndim == 1) {
        ty_dims = std::vector<int64_t>({y_dims[0], 1});
        ty_ndim = y_ndim + 1;
        tdout_ndim = dout_ndim + 1;
      }

      auto y_grad_reduce_dims =
          get_reduce_dims(dy, tdout_ndim, ty_ndim, &ty_dims);

      if (!y_grad_reduce_dims.empty()) {
        dy = sum<T>(dy, IntArray(y_grad_reduce_dims), dy.dtype(), true);
      }
      reshape<T>(dy, IntArray(ty_dims));
    }
  }

  // recover the original dim of output (delete 1)
  std::vector<int64_t> dx_dims =
      dx.initialized() ? vectorize(dx.dims()) : std::vector<int64_t>({});
  std::vector<int64_t> dy_dims =
      dy.initialized() ? vectorize(dy.dims()) : std::vector<int64_t>({});
  std::vector<int64_t> ddout_dims =
      ddout.initialized() ? vectorize(ddout.dims()) : std::vector<int64_t>({});
  if (x_ndim == 1 && y_ndim == 1) {
    if (dx.initialized() && dx_dims[0] == 1) {
      dx = reshape<T>(dx, IntArray(x_dims));
    }
    if (dy.initialized() && dy_dims.back() == 1) {
      dy = reshape<T>(dy, IntArray(y_dims));
    }
    if (ddout.initialized() && ddout_dims == std::vector<int64_t>({1, 1})) {
      ddout = reshape<T>(ddout, IntArray(std::vector<int64_t>({1})));
    }
  } else if (x_ndim == 1) {
    if (dx.initialized() && dx_dims[0] == 1) {
      dx = reshape<T>(dx, IntArray(x_dims));
    }
    if (ddout.initialized() && ddout_dims[0] == 1) {
      ddout = reshape<T>(ddout,
                         IntArray(std::vector<int64_t>(
                             {ddout_dims.cbegin() + 1, ddout_dims.cend()})));
    }
  } else if (y_ndim == 1) {
    if (dy.initialized() && dy_dims.back() == 1) {
      dy = reshape<T>(dy, IntArray(y_dims));
    }
    if (ddout.initialized() && ddout_dims.back() == 1) {
      ddout = reshape<T>(ddout,
                         IntArray(std::vector<int64_t>(
                             {ddout_dims.cbegin(),
                              ddout_dims.cbegin() + ddout_dims.size() - 1})));
    }
  }

  if (x_grad) {
    set_output<T>(dx, x_grad);
  }
  if (y_grad) {
    set_output<T>(dy, y_grad);
  }
  if (grad_out_grad) {
    set_output<T>(ddout, grad_out_grad);
  }
}

X
xiaoguoguo626807 已提交
854 855 856 857 858 859 860 861 862 863 864 865
template <typename T>
void slice_grad(const Tensor& input,
                const Tensor& out_grad,
                const std::vector<int64_t>& axes,
                const IntArray& starts,
                const IntArray& ends,
                const std::vector<int64_t>& infer_flags,
                const std::vector<int64_t>& decrease_axis,
                Tensor* input_grad) {
  if (input_grad) {
    size_t rank = input.dims().size();
    auto out_dims = out_grad.dims();
866
    std::vector<int64_t> origin_out_shape;
X
xiaoguoguo626807 已提交
867 868 869 870 871 872 873 874
    auto in_dims = input.dims();

    auto decrease_size = decrease_axis.size();
    if (decrease_size > 0) {
      if (decrease_size == static_cast<size_t>(in_dims.size())) {
        // all dims decrease
        out_dims = phi::make_ddim(std::vector<int>(decrease_size, 1));
      } else {
875
        origin_out_shape.resize(out_dims.size() + decrease_size, -1);
X
xiaoguoguo626807 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
        for (size_t i = 0; i < decrease_size; ++i) {
          origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < origin_out_shape.size(); ++i) {
          if (origin_out_shape[i] == -1) {
            origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }
        out_dims = phi::make_ddim(origin_out_shape);
      }
    }

    std::vector<int> offsets(rank, 0);
    std::vector<int> extents(rank, 0);
    for (size_t i = 0; i < rank; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    for (size_t i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      int64_t start = starts[i] < 0 ? (starts[i] + in_dims[axis]) : starts[i];
      start = std::max(start, static_cast<int64_t>(0));
      offsets[axis] = start;
    }

    std::vector<int> paddings;
    for (size_t i = 0; i < rank; ++i) {
      paddings.push_back(offsets[i]);
      paddings.push_back((in_dims[i] - out_dims[i]) - offsets[i]);
    }
909 910 911 912 913 914 915 916 917
    if (decrease_size > 0 &&
        (decrease_size != static_cast<size_t>(in_dims.size()))) {
      auto out_tmp =
          pad<T>(reshape<T>(out_grad, origin_out_shape), paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    } else {
      auto out_tmp = pad<T>(out_grad, paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    }
X
xiaoguoguo626807 已提交
918 919 920
  }
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
template <typename T>
void layer_norm_grad(const Tensor& x,
                     const paddle::optional<Tensor>& scale,
                     const paddle::optional<Tensor>& bias,
                     const Tensor& mean,
                     const Tensor& variance,
                     const Tensor& out_grad,
                     float epsilon,
                     int begin_norm_axis,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  auto x_dims = x.dims();
  auto shape_1 = 1;  // front part
  auto shape_2 = 1;  // back part
  for (int i = 0; i < begin_norm_axis; ++i) {
    shape_1 *= x_dims[i];
  }
  for (int i = begin_norm_axis; i < x.dims().size(); ++i) {
    shape_2 *= x_dims[i];
  }
  auto scale_ptr = scale.get_ptr();
  auto bias_ptr = bias.get_ptr();

  // cast dtype to float32 if dtype =float16
  Tensor x_cast = x;
  Tensor out_grad_cast = out_grad;
  Tensor scale_cast;
  if (scale_ptr) {
    scale_cast = reshape<T>(*scale_ptr, std::vector<int64_t>({1, shape_2}));
  }
  if (x.dtype() == phi::DataType::FLOAT16) {
    x_cast = cast<T>(x, phi::DataType::FLOAT32);
    out_grad_cast = cast<T>(out_grad, phi::DataType::FLOAT32);
    if (scale_ptr) {
      scale_cast = cast<T>(scale_cast, phi::DataType::FLOAT32);
    }
  }

  x_cast = reshape<T>(x_cast, std::vector<int64_t>({shape_1, shape_2}));
  out_grad_cast =
      reshape<T>(out_grad_cast, std::vector<int64_t>({shape_1, shape_2}));
  auto mean_ = reshape<T>(mean, std::vector<int64_t>({shape_1, 1}));
  auto variance_ = reshape<T>(variance, std::vector<int64_t>({shape_1, 1}));
  if (bias_grad) {
    if (bias_ptr) {
      auto bias_grad_tmp =
          out_grad_cast.sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      bias_grad_tmp = reshape<T>(bias_grad_tmp, bias_ptr->shape());
      set_output<T>(bias_grad_tmp, bias_grad);
    } else {
      bias_grad = nullptr;
    }
  }
  auto x_sub_mean = x_cast - mean_;
  auto tmp = (1.0 / (variance_ + epsilon));
  auto sqrt_var_1 = sqrt<T>(tmp);
  if (scale_grad) {
    if (scale_ptr) {
      auto scale_grad_tmp =
          (x_sub_mean * sqrt_var_1 * out_grad_cast)
              .sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      scale_grad_tmp = reshape<T>(scale_grad_tmp, scale_ptr->shape());
      set_output<T>(scale_grad_tmp, scale_grad);
    } else {
      scale_grad = nullptr;
    }
  }

  if (x_grad) {
    if (!scale_ptr) {
      scale_cast =
          full<T>(std::vector<int64_t>({1, shape_2}), 1.0, x_cast.dtype());
    }
    auto out_grad_scale = out_grad_cast * scale_cast;
    auto dx_end = (sqrt_var_1 * out_grad_scale);
    auto d_mean_0 =
        (-dx_end).sum(std::vector<int64_t>({1}), x_cast.dtype(), true);
    auto d_mean = (1.0 / shape_2) * d_mean_0;
    auto d_std_1 = (-tmp * x_sub_mean * out_grad_scale)
                       .sum(std::vector<int64_t>({1}), x_cast.dtype(), true);
    auto d_std_2 = (1.0 / shape_2) * sqrt_var_1;
    d_std_2 = reshape<T>(d_std_2, std::vector<int64_t>({shape_1, 1}));
    d_std_2 = d_std_2 * x_sub_mean;
    auto d_std = d_std_1 * d_std_2;

    auto x_grad_tmp = dx_end + d_mean + d_std;
    x_grad_tmp = reshape<T>(x_grad_tmp, phi::vectorize(x.dims()));
    if (x.dtype() == phi::DataType::FLOAT16) {
      x_grad_tmp = cast<T>(x_grad_tmp, x.dtype());
    }
    set_output<T>(x_grad_tmp, x_grad);
  }
}

G
GGBond8488 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
template <typename T>
void cumsum_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 bool flatten,
                 bool exclusive,
                 bool reverse,
                 Tensor* x_grad) {
  if (x_grad) {
    auto grad = cumsum<T>(out_grad, axis, flatten, exclusive, !reverse);
    grad = reshape<T>(grad, x.shape());
    set_output<T>(grad, x_grad);
  }
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
template <typename T>
void split_grad(const std::vector<Tensor>& out_grad,
                const Scalar& axis,
                Tensor* x_grad) {
  if (x_grad) {
    auto grad = concat<T>(out_grad, axis);
    set_output<T>(grad, x_grad);
  }
}

Z
zqw_1997 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
template <typename T>
void topk_grad(const Tensor& x,
               const Tensor& indices,
               const Tensor& out_grad,
               const Scalar& k,
               const int& axis,
               const bool& largest,
               const bool& sorted,
               Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = put_along_axis<T>(zero_tensor, indices, out_grad, axis);
1053 1054 1055
    set_output<T>(x_grad_tmp, x_grad);
  }
}
Z
zqw_1997 已提交
1056

1057 1058 1059 1060 1061 1062 1063 1064
template <typename T>
void gather_nd_grad(const Tensor& x,
                    const Tensor& index,
                    const Tensor& out_grad,
                    Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = scatter_nd_add<T>(zero_tensor, index, out_grad);
Z
zqw_1997 已提交
1065 1066 1067 1068
    set_output<T>(x_grad_tmp, x_grad);
  }
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
template <typename T>
void max_grad(const Tensor& x,
              const Tensor& out,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
  if (x_dim_size == 0 || x_dim_size == 1 || keepdim) {
    auto out_grad_tmp = out_grad.expand(IntArray(x_dim));
    auto out_tmp = out.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  } else {
    auto axis_ = std::vector<int64_t>();
    if (reduce_all) {
      for (int64_t i = 1; i < x_dim_size; i++) {
        axis_.push_back(i);
      }
    } else {
      axis_ = axis.GetData();
      for (int64_t i = 0; i < axis_size; i++) {
        if (axis[i] < 0) {
          axis_[i] = axis[i] + x_dim_size;
        }
      }
    }
    auto out_grad_ = unsqueeze<T>(out_grad, axis_);
    auto out_ = unsqueeze<T>(out, axis_);
    auto out_grad_tmp = out_grad_.expand(IntArray(x_dim));
    auto out_tmp = out_.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  }
  set_output<T>(x_grad_tmp, x_grad);
}

1120 1121 1122 1123 1124 1125 1126
template <typename T>
void assign_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    by_pass<T>(out_grad, x_grad);
  }
}

G
GGBond8488 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
template <typename T>
void erf_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto m_2_sqrt_pi = full<T>(phi::vectorize(x.dims()), M_2_SQRTPI, x.dtype());
    auto neg_one = full<T>(phi::vectorize(x.dims()), -1.0, x.dtype());
    auto neg_tmp = neg_one * x * x;
    auto mul_tmp = m_2_sqrt_pi * exp<T>(neg_tmp);
    set_output<T>(out_grad * mul_tmp, x_grad);
  }
}

H
heyanru 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
template <typename T>
void maximum_grad(const Tensor& x,
                  const Tensor& y,
                  const Tensor& out_grad,
                  int axis,
                  Tensor* x_grad,
                  Tensor* y_grad) {
  if (x_grad) {
    auto x_tmp = cast<T>(greater_than<T>(x, y), out_grad.dtype());
    auto dx_res = out_grad * x_tmp;
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, x_grad);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
        set_output<T>(dx_tmp, x_grad);
      }
    } else {
      set_output<T>(dx_res, x_grad);
    }
  }

  if (y_grad) {
    auto y_tmp = cast<T>(less_equal<T>(x, y), out_grad.dtype());
    auto dy_res = out_grad * y_tmp;
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, y_grad);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, y_grad);
      }
    } else {
      set_output<T>(dy_res, y_grad);
    }
  }
}

1184
template <typename T>
1185 1186 1187 1188 1189 1190 1191 1192
void dropout_grad(const Tensor& mask,
                  const Tensor& out_grad,
                  const Scalar& p,
                  bool is_test,
                  const std::string& mode,
                  Tensor* x_grad) {
  if (!x_grad) return;
  if (is_test) {
1193
    if (mode == "upscale_in_train") {
1194 1195 1196 1197 1198
      by_pass<T>(out_grad, x_grad);
    } else {
      set_output<T>(out_grad * (1.0 - p.to<float>()), x_grad);
    }
  } else {
1199
    if (mode == "upscale_in_train") {
1200
      if (p.to<float>() == 1.0f) {
C
cxxly 已提交
1201
        set_output<T>(scale<T>(out_grad, 0.0), x_grad);
1202
      } else {
C
cxxly 已提交
1203 1204 1205
        set_output<T>(scale<T>(out_grad * cast<T>(mask, out_grad.dtype()),
                               1.0 / (1.0 - p.to<float>())),
                      x_grad);
1206 1207 1208 1209 1210 1211
      }
    } else {
      set_output<T>(out_grad * cast<T>(mask, out_grad.dtype()), x_grad);
    }
  }
}
1212

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
template <typename T>
void sin_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = cos<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

template <typename T>
void cos_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = -sin<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
template <typename T>
void batch_norm_grad(const Tensor& x,
                     const Tensor& scale,
                     const Tensor& bias,
                     const paddle::optional<Tensor>& mean_out,
                     const paddle::optional<Tensor>& variance_out,
                     const Tensor& saved_mean,
                     const Tensor& saved_variance,
                     const paddle::optional<Tensor>& reserve_space,
                     const Tensor& out_grad,
                     float momentum,
                     float epsilon,
                     const std::string& data_layout,
                     bool is_test,
                     bool use_global_stats,
                     bool trainable_statistics,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  use_global_stats = is_test || use_global_stats;

  DataLayout data_layout_ = phi::StringToDataLayout(data_layout);

  Tensor x_data = x;
  Tensor out_grad_data = out_grad;
  if (x.dtype() == phi::DataType::FLOAT16) {
    x_data = cast<T>(x, phi::DataType::FLOAT32);
  }
  if (out_grad.dtype() == phi::DataType::FLOAT16) {
    out_grad_data = cast<T>(out_grad, phi::DataType::FLOAT32);
  }
  auto x_dims = x_data.dims();
  const int C = (data_layout_ == DataLayout::kNCHW ? x_dims[1]
                                                   : x_dims[x_dims.size() - 1]);
  int nume = 1;
  for (auto i = 0; i < x_dims.size(); i++) {
    nume = nume * x_dims[i];
  }

  const int nhw = nume / C;

  if (x_dims.size() == 2 && data_layout_ == DataLayout::kNCHW) {
    data_layout_ = DataLayout::kNHWC;
  }

  auto run_var = variance_out.get();
  auto run_mean = mean_out.get();

  Tensor mean_data;
  Tensor rsqrt_var;

  if (use_global_stats) {
    auto eps =
        full<T>(phi::vectorize(run_var.dims()), epsilon, run_var.dtype());
    mean_data = run_mean;
1280
    rsqrt_var = (run_var + eps).pow(-0.5);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
  } else {
    mean_data = saved_mean;
    rsqrt_var = saved_variance;
  }

  // inv_var = 1 / sqrt(var + eps)
  // reduce_axis = [0, 2, 3] (NCHW) [0, 1, 2] (NHWC)
  //
  // d_bias = np.sum(d_y, reduce_axis)
  // d_scale = np.sum((X - mean) / inv_var * dy, reduce_axis)
  //
  // train mode
  // d_x = (1. / nhw) * scale * inv_var
  // *(nhw * d_y - np.sum(d_y, reduce_axis) - (X - mean) * inv_var * inv_var *
  // np.sum(d_y * (X - mean), reduce_axis))
  //
  // test mode
  // d_x = d_y * scale * inv_var

  std::vector<int> nchw_to_nhwc_dim = {0, 2, 3, 1};
  std::vector<int> nhwc_to_nchw_dim = {0, 3, 1, 2};
R
risemeup1 已提交
1302
  auto reduce_axis = IntArray(std::vector<int64_t>{0, 1, 2});
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
  auto dtype = x_data.dtype();

  switch (data_layout_) {
    case DataLayout::kNCHW: {
      auto nhwc_x = transpose<T>(x_data, nchw_to_nhwc_dim);
      auto nhwc_out_grad = transpose<T>(out_grad_data, nchw_to_nhwc_dim);

      auto x_sub_mean = nhwc_x - mean_data;

      if (x_grad) {
        if (use_global_stats) {
          auto nhwc_x_grad = scale * rsqrt_var * nhwc_out_grad;
          auto nchw_x_grad = transpose<T>(nhwc_x_grad, nhwc_to_nchw_dim);
          set_output<T>(nchw_x_grad, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;
          auto mean_temp1 =
              sum<T>(nhwc_out_grad, reduce_axis, dtype, false) / nhw;

          auto tmp = nhwc_out_grad * x_sub_mean * rsqrt_var * rsqrt_var / nhw;
          auto mean_temp2 = sum<T>(tmp, reduce_axis, dtype, false);
          auto part2 = nhwc_out_grad - mean_temp1 - x_sub_mean * mean_temp2;

          auto x_grad_data = part1 * part2;
          auto nchw_x_grad = transpose<T>(x_grad_data, nhwc_to_nchw_dim);
          if (x.dtype() == phi::DataType::FLOAT16) {
            nchw_x_grad = cast<T>(nchw_x_grad, x.dtype());
          }
          set_output<T>(nchw_x_grad, x_grad);
        }
      }
      if (scale_grad) {
        auto scale_grad_data = sum<T>(
            nhwc_out_grad * x_sub_mean * rsqrt_var, reduce_axis, dtype, false);
        set_output<T>(scale_grad_data, scale_grad);
      }
      if (bias_grad) {
        auto bias_grad_data = sum<T>(nhwc_out_grad, reduce_axis, dtype, false);
        set_output<T>(bias_grad_data, bias_grad);
      }
      break;
    }
    case DataLayout::kNHWC: {
      if (x_grad) {
        auto x_sub_mean = x_data - mean_data;
        if (use_global_stats) {
          auto x_grad_data = scale * rsqrt_var * out_grad_data;
          set_output<T>(x_grad_data, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;
          auto mean_temp1 =
              sum<T>(out_grad_data, reduce_axis, dtype, false) / nhw;

          auto tmp = out_grad_data * x_sub_mean * rsqrt_var * rsqrt_var / nhw;
          auto mean_temp2 = sum<T>(tmp, reduce_axis, dtype, false);
1358
          auto part2 = out_grad_data - mean_temp1 - x_sub_mean * mean_temp2;
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

          auto x_grad_data = part1 * part2;
          if (x.dtype() == phi::DataType::FLOAT16) {
            x_grad_data = cast<T>(x_grad_data, x.dtype());
          }
          set_output<T>(x_grad_data, x_grad);
        }
        if (scale_grad) {
          auto scale_grad_data = sum<T>(out_grad_data * x_sub_mean * rsqrt_var,
                                        reduce_axis,
                                        dtype,
                                        false);
          set_output<T>(scale_grad_data, scale_grad);
        }
        if (bias_grad) {
          auto bias_grad_data =
              sum<T>(out_grad_data, reduce_axis, dtype, false);
          set_output<T>(bias_grad_data, bias_grad);
        }
        break;
      }
    }
    default:
      PADDLE_THROW(phi::errors::InvalidArgument("Unknown storage order: %s",
                                                data_layout));
  }
}

C
cxxly 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
template <typename T>
void gelu_grad(const Tensor& x,
               const Tensor& out_grad,
               bool approximate,
               Tensor* x_grad) {
  if (!x_grad) return;
  // Promote to fp32 when the input type is fp16 for keeping consistent with
  // phi kernel

  if (x.dtype() == phi::DataType::FLOAT16 ||
      x.dtype() == phi::DataType::BFLOAT16) {
    auto promoted_x = cast<T>(x, phi::DataType::FLOAT32);
    auto promoted_out_grad = cast<T>(out_grad, phi::DataType::FLOAT32);
    if (approximate) {
      float kbeta = M_SQRT2 * M_2_SQRTPI * 0.5;
      float kkappa = 0.044715;
      auto x_sq = promoted_x * promoted_x;
      auto x_cube = x_sq * promoted_x;
      auto inner = kbeta * (promoted_x + kkappa * x_cube);
      auto tanh_inner = tanh<T>(inner);

      auto left = scale<T>(promoted_x, 0.5);
      auto right = scale<T>(tanh_inner, 1., 1.);

      auto left_derivative = scale<T>(right, 0.5);

      auto tanh_derivative = scale<T>(tanh_inner * tanh_inner, -1., 1.);
      auto inner_derivative = kbeta * (scale<T>(3 * kkappa * x_sq, 1., 1.));
      auto right_derivative = left * tanh_derivative * inner_derivative;

      set_output<T>(
          cast<T>(promoted_out_grad * (left_derivative + right_derivative),
                  x.type()),
          x_grad);
    } else {
      float kalpha = M_SQRT1_2;
      float kbeta = M_2_SQRTPI * M_SQRT1_2 * 0.5;
      auto cdf = scale<T>(scale<T>(erf<T>(kalpha * promoted_x), 1., 1.), 0.5);
      auto pdf = kbeta * exp<T>(scale<T>(promoted_x * promoted_x, -0.5));
      set_output<T>(
          cast<T>(promoted_out_grad * (cdf + promoted_x * pdf), x.type()),
          x_grad);
    }
  } else {
    // Scale only support fp32 attr in static graph mode, use elementwise_xx
    // when precision is over fp32.
    if (approximate) {
      auto kBeta = M_SQRT2 * M_2_SQRTPI * 0.5;
      auto kKappa = 0.044715;
      auto x_sq = x * x;
      auto x_cube = x_sq * x;
      auto inner = kBeta * (x + kKappa * x_cube);
      auto tanh_inner = tanh<T>(inner);

      auto left = scale<T>(x, 0.5);
      auto right = scale<T>(tanh_inner, 1., 1.);

      auto left_derivative = scale<T>(right, 0.5);

      auto tanh_derivative = scale<T>(tanh_inner * tanh_inner, -1., 1.);
      auto inner_derivative = kBeta * (scale<T>(3 * kKappa * x_sq, 1., 1.));
      auto right_derivative = left * tanh_derivative * inner_derivative;

      set_output<T>(out_grad * (left_derivative + right_derivative), x_grad);
    } else {
      auto kAlpha = M_SQRT1_2;
      auto kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5;
      auto cdf = scale<T>(scale<T>(erf<T>(kAlpha * x), 1., 1.), 0.5);
      auto pdf = kBeta * exp<T>(scale<T>(x * x, -0.5));
      set_output<T>(out_grad * (cdf + x * pdf), x_grad);
    }
  }
}
J
Jiabin Yang 已提交
1460 1461
}  // namespace prim
}  // namespace paddle